首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用普通接触曝光研制成栅长为0 .2 5 μm的Ga As基In Al As/ In Ga As变组分高电子迁移率晶体管(MHEMT) ,测得其跨导为5 2 2 m S/ m m,沟道电流密度达4 90 m A/ mm,截止频率为75 GHz,比同样工艺条件下Ga As基In Ga P/ In Ga As PHEMT的性能有很大的提高.对该器件工艺及结果进行了分析,提取了器件的交流小信号等效电路模型参数,并提出了进一步得到高稳定性、高性能器件的方法.  相似文献   

2.
优化了GaAs基InGaP/AlGaAs/InGaAs赝配高电子迁移率晶体管(PHEMT)的外延结构,有利于获得增强型PHEMT的正向阈值电压.采用光学接触式光刻方式,实现了单片集成0.8μm栅长GaAs基InGaP/AlGaAs/InGaAs增强/耗尽型PHEMT.直流和高频测试结果显示:增强型(耗尽型)PHEMT的阈值电压、非本征跨导、最大饱和漏电流密度、电流增益截止频率、最高振荡频率分别为0.1V(-0.5V),330mS/mm(260mS/mm),245mA/mm(255mA/mm),14.9GHz(14.5GHz)和18GHz(20GHz).利用单片集成增强/耗尽型PHEMT实现了直接耦合场效应晶体管逻辑反相器,电源电压为1V,输入0.15V电压时,输出电压为0.98V;输入0.3V电压时,输出电压为0.18V.  相似文献   

3.
优化了GaAs基InGaP/AlGaAs/InGaAs赝配高电子迁移率晶体管(PHEMT)的外延结构,有利于获得增强型PHEMT的正向阈值电压.采用光学接触式光刻方式,实现了单片集成0.8μm栅长GaAs基InGaP/AlGaAs/InGaAs增强/耗尽型PHEMT.直流和高频测试结果显示:增强型(耗尽型)PHEMT的阈值电压、非本征跨导、最大饱和漏电流密度、电流增益截止频率、最高振荡频率分别为0.1V(-0.5V),330mS/mm(260mS/mm),245mA/mm(255mA/mm),14.9GHz(14.5GHz)和18GHz(20GHz).利用单片集成增强/耗尽型PHEMT实现了直接耦合场效应晶体管逻辑反相器,电源电压为1V,输入0.15V电压时,输出电压为0.98V;输入0.3V电压时,输出电压为0.18V.  相似文献   

4.
报道了用 MBE技术生长的 Ga As基 In Al As/In Ga As改变结构高电子迁移率晶体管 (MHEMT)的制作过程和器件的直流性能。对于栅长为 0 .8μm的器件 ,最大非本征跨导和饱和电流密度分别为 3 5 0 m S/mm和1 90 m A/mm。源漏击穿电压和栅反向击穿电压分别为 4V和 7.5 V。这些直流特性超过了相同的材料和工艺条件下 Ga As基 PHEMT的水平 ,与 In P基 In Al As/In Ga As HEMT的性能相当  相似文献   

5.
利用高能电子衍射振荡研究MBE异质材料生长工艺。优化了AlGaAs/InGaAs/GaAs材料生长工艺。通过霍耳测量、X射线双晶衍射及二次离子质谱研究了利用该工艺生长的AlGaAs/InGaAs/GaAs双δ掺杂PHEMT结构材料,获得了较好的材料参数。利用该材料研制器件也有较好的结果。  相似文献   

6.
采用基于测量S参数和直流参数的工程模型与微波在片测试技术,建立与φ76mm GaAs工艺线直接结合的GaAs器件(MESFET,PHEMT)的MMIC CAD适用器件模型及模型库,并通过对不同种类GaAs MMIC的设计研制进行了验证与改进,模拟结果和测试结果基本一致.目前此模型和模型库已用于φ76mm GaAs工艺线上多种微波GaAs单片的设计研制.  相似文献   

7.
应用电子束直写技术成功制作了栅长100nm的高性能In0.52Al0.48As/In0.53Ga0.47As GaAs MHEMT(渐变组分高电子迁移率晶体管)。从工艺角度,结合器件的小信号等效电路的理论分析,优化了器件T形栅尺寸与工艺,从而减小了器件寄生参数,达到了较好的器件性能。最终制作的In0.52Al0.48As/In0.53Ga0.47As MHEMT饱和电流达到460mA/mm,夹断电压-0.8V,在Vgs为-0.23V时的最大非本征跨导gm为940mS/mm,截止频率ft达到220GHz,最大振荡频率fmax大于200GHz。  相似文献   

8.
采用基于测量S参数和直流参数的工程模型与微波在片测试技术,建立与φ76mm GaAs工艺线直接结合的GaAs器件(MESFET,PHEMT)的MMIC CAD适用器件模型及模型库,并通过对不同种类GaAs MMIC的设计研制进行了验证与改进,模拟结果和测试结果基本一致.目前此模型和模型库已用于φ76mm GaAs工艺线上多种微波GaAs单片的设计研制.  相似文献   

9.
文章报道了90nm栅长的晶格匹配InP基HEMT器件。栅图形是通过80kV的电子束直写的,并采用了优化的三层胶工艺。器件做在匹配的InAlAs/InGaAs/InP HEMT材料上。当Vds=1.0V时,两指75μm栅宽器件的本征峰值跨导达到720ms/mm,最大电流密度为500mA/mm,器件的阂值电压为.0.8V,截止频率达到127GHz,最大振荡频率达到152GHz。  相似文献   

10.
设计了一种GaAs PHEMT低噪声器件。通过电子束直写手段实现了0.15μm Y型栅,对栅型优化以减小器件栅电阻和栅寄生电容。采用高In含量的沟道设计以改善沟道电子输运特性,采用InGaAs/GaAs复合帽层以改善欧姆接触特性,并通过低噪声工艺流程制作了4×50μm GaAs PHEMT器件。测试结果表明,器件fT达到80GHz,在10GHz处最小噪声系数小于0.4dB,相关增益大于10dB。对于0.15μm栅长GaAs PHEMT器件来说,这是很好的结果。  相似文献   

11.
报道了截止频率为218GHz的晶格匹配的In0.53Ga0.47As/In0.52Al0.48As高电子迁移率晶体管.这是迄今为止国内报道的截止频率最高的高电子迁移率晶体管.器件直流特性也很优异:跨导为980mS/mm,最大电流密度为870mA/mm.文中的材料结构和所有器件制备工艺均为本研究小组自主研制开发.  相似文献   

12.
主要论述了采用POSES软件对亚微米GaAs PHEMT器件进行的结构设计与优化。在结构设计过程中,本文首先简要分析了PHEMT器件的工作原理;然后利用POSES软件数值求解了材料结构和器件性能之间的关系,并根据上述分析结果优化器件结构设计,完成流片实验。流片得到的0.25μm GaAs PHEMT器件的性能参数为:跨导gm=440mS/mm、截止频率fT=50GHz、最大振荡频率fmax>80GHz,显示出良好的DC和AC小信号特性。  相似文献   

13.
利用金属有机化合物气相外延技术研究了AlGaN/GaN高电子迁移率晶体管(HEMT)结构的外延生长及器件制作,重点比较了具有不同AlGaN层厚度的HEMT器件的静态特性.实验发现具有较薄AlGaN隔离层的结构表现出较好的器件特性.栅长为1μm的器件获得了650mA/mm的最大饱和电流密度和100mS/mm的最大跨导.  相似文献   

14.
报道了微波低噪声异质结赝配HEMT的研究结果。以半绝缘GaAs为衬底,用MBE方法生长异质结材料。采用低应力、低损伤工艺程序,以AuGeNi/Au形成源漏欧姆接触,Al形成栅肖特基势垒接触,聚酰亚胺介质为钝化膜,制成了InGaAs/AlGaAs赝配HEMT。其直流跨导为280mS/mm,在12GHz下,器件最小噪声系数为0.68dB,相关增益为7.0dB。  相似文献   

15.
介绍了一种Ku波段内匹配微波功率场效应晶体管.采用GaAs PHEMT 0.25μm T型栅工艺,研制出总栅宽为14.4 mm的功率PHEMT管芯.器件由四管芯合成,在14~14.5 GHz频率范围内,输出功率大于20 W,附加效率大于27%,功率增益大于6 dB,增益平坦度为±0.3 dB.  相似文献   

16.
利用电子束光刻技术制备出200nm栅长GaAs基InAIAs/InGaAs MHEMT器件.Ti/Pt/Au蒸发作为栅极金属.同时为了减少栅寄生电容和寄生电阻,采用3层胶工艺,实现了T 型栅. GaAs基MHEMT 器件获得了优越的直流和高频性能,跨导、饱和漏电流密度、域值电压、电流增益截止频率和最大振荡频率分别达到510mS/mm, 605mA/mm, -1.8V, 110GHz及 72GHz,为进一步研究高性能GaAs基MHEMT器件奠定了基础.  相似文献   

17.
一种InGaAs/InP复合沟道高电子迁移率晶体管模拟的新方法   总被引:1,自引:1,他引:0  
采用一种新方法对InGaAs/InP复合沟道高电子迁移率晶体管进行了模拟.该方法通过流体力学模型和密度梯度模型的联合求解,得到了沟道内的电子密度分布.与一些传统方法相比,该方法收敛性更好,速度更快,且同样适用于其他类型高电子迁移率晶体管器件的模拟.利用仿真对InGaAs/InP复合沟道高电子迁移率晶体管进行了深入研究.  相似文献   

18.
在新型的共振隧穿二极管(RTD)器件与PHEMT器件单片集成材料结构上,研究和分析了分立器件的制作工艺,给出了分立器件的制作工艺参数.利用上述工艺成功制作了RTD和PHEMT器件,并在室温下分别测试了RTD器件和PHEMT器件的电学特性.测试表明:在室温下,RTD器件的峰电流密度与谷电流密度之比提高到1.78;PHEMT器件的最大跨导约为120mS/mm,在Vgs=0.5V时的饱和电流约为270mA/mm.这将为RTD集成电路的研制奠定工艺基础.  相似文献   

19.
利用电子束光刻技术制备出200nm栅长GaAs基InAlAs/InGaAs MHEMT器件.Ti/Pt/Au蒸发作为栅极金属.同时为了减少栅寄生电容和寄生电阻,采用3层胶工艺,实现了T型栅.GaAs基MHEMT 器件获得了优越的直流和高频性能,跨导、饱和漏电流密度、域值电压、电流增益截止频率和最大振荡频率分别达到510mS/mm,605mA/mm,-1.8V,110GHz及72GHz,为进一步研究高性能GaAs基MHEMT器件奠定了基础.  相似文献   

20.
采用一种新方法对InGaAs/InP复合沟道高电子迁移率晶体管进行了模拟.该方法通过流体力学模型和密度梯度模型的联合求解,得到了沟道内的电子密度分布.与一些传统方法相比,该方法收敛性更好,速度更快,且同样适用于其他类型高电子迁移率晶体管器件的模拟.利用仿真对InGaAs/InP复合沟道高电子迁移率晶体管进行了深入研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号