首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 407 毫秒
1.
Electrochemical characterization of two different samples of an activated membrane, which consists of a polymeric support containing different amounts of Di-(2-ethylhexyl) phosphoric acid as a carrier, was made by measuring the electrical resistance, salt diffusion and membrane potential for the activated membranes and the polymeric support in contact with NaNO3 solutions. Transport parameters such as the ion transport numbers and concentration of fixed charge in the membrane, salt and ionic permeabilities at different NaNO3 concentrations were obtained. A comparison of the different electrochemical parameters obtained with both activated membranes and the polymeric support shows how the carrier affects the transport of NaNO3 solutions across the activated membranes. On the other hand, chemical composition of the membrane surfaces as a function of the amount of carrier was determined by X-ray photoelectron spectroscopy technique, which also allows an envisagement of the chemical bonding between the carrier and the membrane top layer (polyamide).  相似文献   

2.
The transport of NaCl and CaCl2 solutions across isolated pepper cuticular membranes was studied by means of conductivity, membrane potential and diffusion experiments. Some characteristic membrane parameters such as the electrical resistance, ionic and salt permeabilities were obtained as a function of the electrolyte concentrations. Cuticle morphological asymmetry accounts for differences in membrane potential values under external reverse gradients. The influence of temperature on the membrane structure was also considered, but only small changes in the electrokinetic parameters were obtained. From the NaCl diffusion experiments two activation energies were determined (54.8 kJ/mol for temperature ranging between 15 and 35°C, and 20.6 kJ/mol for the interval of temperature between 40 and 60°C), which could be associated to thermal transitions in the molecular structure of the cuticle for the interval 30–40°C.  相似文献   

3.
Clay liners are charged membranes and show semipermeable behavior regarding the flow of fluids, electrical charge, chemicals and heat. At zero gradients of temperature and hydrostatic pressure, a salt concentration gradient across a compacted clay sample induces not only an osmotic flux of water and diffusion of salt across the membrane but also an electrical potential gradient, defined as membrane potential. Laboratory experiments were performed on commercially available bentonite samples in a rigid-wall permeameter connected to two electrically insulated fluid reservoirs filled with NaCl solutions of different concentrations and equipped with Ag/AgCl electrodes to measure the electrical potential gradient. The effect of membrane potential could be cancelled out by short-circuiting the clay with the so-called virtual shortcut. The potential gradient across the sample is brought to zero with a negative feedback circuit. It was observed that the water flux and the diffusion of Cl- were hindered by the occurrence of a membrane potential, indicating that an electroosmotic counterflow is induced. Flow parameters were calculated with modified coupled flow equations of irreversible thermodynamics. They were in excellent agreement with values reported in the literature. Comparing the method of short-circuiting with a study elsewhere, where the electrodes were physically short-circuited, it was shown that the virtual shortcut is more appropriate because physically short-circuiting induces additional effects that are attributed to the fluxes.  相似文献   

4.
Changes in electrical and transport parameters for aged composite polyamide/polysulfone membrane samples (PAC) and their porous support layers (PSU) as a result of chemical treatment (immersion in 1 M HNO3 solution) at four different times (12 h < or = t < or = 72 h) have been obtained. Salt permeability, ion transport number, and membrane electrical resistance for the treated samples were determined from salt diffusion, membrane potential, and impedance spectroscopy measurements, which were carried out with the membranes in contact with NaCl solutions at different concentrations and compared with those determined for fresh and aged nontreated samples. Results show the strong effect of aging on membrane parameters, particularly the decrease in salt permeability (P(s)) and the increase in membrane electrical resistance (R(m)), while ion transport number is hardly affected by aging, chemical treatment, or treatment time. Results show how the compaction of the porous structure causes by aging (dried membrane matrix structure) can be partially reduced by HNO3 treatment, and they also allow the estimation of 24-h treatment as the optimum time (higher salt permeability and lower membrane electrical resistance), mainly for the polysulfone support layer. The use of equivalent circuits in the analysis of impedance spectroscopy data allows separate estimation of the electrical resistance associated with each sublayer of the composite PAC membrane samples. On the other hand, chemical changes in the active top layer of the PAC membrane (polyamide active layer) were obtained from XPS analysis, which show some modifications in the atomic concentration percentages of the polyamide characteristic elements as a result of acidic treatment time, which are more significant after 72-h acidic immersion.  相似文献   

5.
We developed a novel measurement method of the Donnan potential difference at a charged membrane/salt solution interface. The method can measure the potential under the condition that the membrane charge density is much lower than the KCl concentration of the salt bridge. This method is very useful for obtaining the effective charge density of each layer of a bipolar membrane. The present experiments in a system of a negatively charged poly(vinyl alcohol) membrane and a single salt solution of KCl, NaCl, LiCl, CaCl2 and LaC3 revealed that the membrane effective charged density has the same value for all the ions. The experiments in mixed KCl and CaCl2 solution revealed that the potential in the system is governed mainly by the concentration of the counterion having the highest valence in the system.  相似文献   

6.
Electrical and electrokinetic phenomena (electrical resistance, streaming potential and membrane potential) in a porous polysulfone membrane was studied in the framework of the linear thermodynamics of irreversible processes and the phenomenological coefficients were determined for different concentrations of NaCl and MgCl2 solutions (10−3M<5×10−2M). From experimental values, other characteristic membrane parameters such as the concentration of fixed charge in the membrane (=−3×10−3M), the ionic transport numbers and permeabilities through the membrane (t(Na+)=0.392 and t(Mg+2)=0.363; P(Na+)=3.5×l0−8m/sec and P(Mg+2)=2.9×10−8m/sec) were also obtained. Membrane surface-electrolyte solution interface was characterized by zeta potential values. The effect of both salt concentration and pH on zeta potential results was also studied.  相似文献   

7.
We use accurate thermodynamic derivatives extracted from high-precision measurements of the four volume-fixed diffusion coefficients in ternary solutions of lysozyme chloride in aqueous NaCl, NH4Cl, and KCl at pH 4.5 and 25 degrees C to (a) assess the relative contributions of the common-ion and nonideality effects to the protein chemical potential as a function of salt concentration, (b) compare the behavior of the protein chemical potential for the three salts, which we found to be consistent with the Hofmeister series, and (c) discuss our thermodynamic data in relation to the dependence of the protein solubility on salt concentration. The four diffusion coefficients are reported at 0.6 mM lysozyme chloride and 0.25, 0.5, 0.9, 1.2, and 1.5 M KCl and extend into the protein-supersaturated region. The chemical potential cross-derivatives are extracted from diffusion data using the Onsager reciprocal relation and the equality of molal cross-derivatives of solute chemical potentials. They are compared to those calculated previously from diffusion data for lysozyme in aqueous NaCl and NH4Cl. We estimate the effective charge on the diffusing lysozyme cation at the experimental concentrations. Our diffusion measurements on the three salts allowed us to analyze and interpret the four diffusion coefficients for charged proteins in the presence of 1:1 electrolytes. Our results may provide guidance to the understanding of protein crystallization.  相似文献   

8.
Interactions between salt ions and lipid components of biological membranes are essential for the structure, stability, and functions of the membranes. The specific ionic composition of aqueous buffers inside and outside of the cell is known to differ considerably. To model such a situation we perform atomistic molecular-dynamics (MD) simulations of a single-component phosphatidylcholine lipid bilayer which separates two aqueous reservoirs with and without NaCl salt. To implement the difference in electrolyte composition near two membrane sides, a double bilayer setup (i.e., two bilayers in a simulation box) is employed. It turns out that monovalent salt, being in contact with one leaflet only, induces a pronounced asymmetry in the structural, electrostatic, and dynamical properties of bilayer leaflets after 50 ns of MD simulations. Binding of sodium ions to the carbonyl region of the leaflet which is in contact with salt results in the formation of "Na-lipids" complexes and, correspondingly, reduces mobility of lipids of this leaflet. In turn, attractive interactions of chloride ions (mainly located in the aqueous phase close to the water-lipid interface) with choline lipid groups lead to a substantial (more vertical) reorientation of postphatidylcholine headgroups of the leaflet adjoined to salt. The difference in headgroup orientation on two sides of a bilayer, being coupled with salt-induced reorientation of water dipoles, leads to a notable asymmetry in the charge-density profiles and electrostatic potentials of bilayer constitutes of the two leaflets. Although the overall charge density of the bilayer is found to be almost insensitive to the presence of salt, a slight asymmetry in the charge distribution between the two bilayer leaflets results in a nonzero potential difference of about 85 mV between the two water phases. Thus, a transmembrane potential of the order of the membrane potential in a cell can arise without ionic charge imbalance between two aqueous compartments.  相似文献   

9.
Electrochemical and electrokinetic characterizations of cellophane membrane samples have been carried out by measuring membrane potential, salt diffusion, and tangential streaming potential, which allow the determination of different characteristic membrane parameters. Experiments were made with the membrane samples in contact with NaCl and NaNO(3) solutions at different concentrations and under different external conditions (concentration gradients), in order to obtain differences in transport and membrane characteristic parameters, depending on the electrolyte considered. Salt permeability across the membrane, which was obtained from diffusion measurements, is about twice as high for NaCl solutions as for NaNO(3) solutions, which is attributed to the different sizes of the electrolytes. Membrane potential measurements keeping the concentration ratio constant (C(1)/C(2)=2) were used to determine both the effective fixed charge concentration in the membrane, X(f), and the average value of transport numbers, t(i); taking into account these values, concentration dependence of membrane potential under a different external condition (C(1)=cte=0.01 M, 5 x 10(-3)< or =C(M)< or =5 x 10(-2)) was predicted. Results show that cellophane membrane behaves as a weak cation-exchange membrane and its permselectivity to cations is practically independent of the electrolyte considered. From electrokinetic results, assuming a Langmuir-type adsorption of anions on the cellophane surface, the number of accessible sites per surface unit was obtained, which is higher for Cl(-) than for NO(3)(-), in agreement with the small radii of chlorine ions; however, no significant differences in the specific adsorption free energy were found (DeltaG(Nacl)=-22.0 x 10(3) J/mol) and (DeltaG(NaNO(3))=-23.2 x 10(3) J/mol).  相似文献   

10.
11.
The potential of using ultrafiltration for separation of salt solutions has been explored. Solutions of phosphates were filtered through commercially available ZrO2 ultrafiltration membranes, with a cut-off value of 15 kD. In the experiments, effects of cross flow, permeate flux, pH and ionic strength of the solution on rejection were the main items of interest. The process is modelled using the Maxwell-Stefan equations for mass transfer, accounting for the three different driving forces that govern the process (gradients in electrical potential, pressure and concentrations). The rejections observed for the phosphate ions were surprisingly high (up to 80%) considering the cut-off value of the membrane used. They were also strongly influenced by the ionic strength of the solution, indicating that electrical effects are important. The rejection curves are well described by the Maxwell-Stefan model, in which the charge of the membrane was assumed to be dependent upon solute concentration according to a Freundlich isotherm. The model is also able to describe the effect of concentration polarisation in the liquid boundary layer in front of the membrane.  相似文献   

12.
In this work polystyrene based strontium phosphate membranes (SPMs) were prepared by applying different pressures. The membrane potential is measured with uni-univalent electrolytes (KCl, NaCl, and LiCl) solutions using saturated calomel electrodes (SCEs). The effective fixed charge density of these membranes is determined by the Torell, Meyer and Sievers method and it showed the dependence of membrane potential on the porosity, the charge on the membrane matrix, charge and size of permeating ions. The membranes are characterized by X-ray diffraction, scanning electron microscopy and IR spectroscopy. The order of surface charge density for electrolytes is KCl > NaCl > LiCl. Other parameters such as transport number, distribution coefficient, charge effectiveness and related parameters are calculated. The membrane was found to be mechanically stable, and can be operated over a wide pH range.  相似文献   

13.
Influence of steric, electric, and dielectric effects on membrane potential   总被引:1,自引:0,他引:1  
The membrane potential arising through nanofiltration membranes separating two aqueous solutions of the same electrolyte at identical hydrostatic pressures but different concentrations is investigated within the scope of the steric, electric, and dielectric exclusion model. The influence of the ion size and the so-called dielectric exclusion on the membrane potential arising through both neutral and electrically charged membranes is investigated. Dielectric phenomena have no influence on the membrane potential through neutral membranes, unlike ion size effects which increase the membrane potential value. For charged membranes, both steric and dielectric effects increase the membrane potential at a given concentration but the diffusion potential (that is the high-concentration limit of the membrane potential) is affected only by steric effects. It is therefore proposed that membrane potential measurements carried out at high salt concentrations could be used to determine the mean pore size of nanofiltration membranes. In practical cases, the membrane volume charge density and the dielectric constant inside pores depend on the physicochemical properties of both the membrane and the surrounding solutions (pH, concentration, and chemical nature of ions). It is shown that the Donnan and dielectric exclusions affect the membrane potential of charged membranes similarly; namely, a higher salt concentration is needed to screen the membrane fixed charge. The membrane volume charge density and the pore dielectric constant cannot then be determined unambiguously by means of membrane potential experiments, and additional independent measurements are in need. It is suggested to carry out rejection rate measurements (together with membrane potential measurements).  相似文献   

14.
An amphoteric membrane consists of both positively and negatively fixed charge groups chemically bound to the polymer chains. If the external solution is changed from alkali to acid, it is possible to obtain an experimental result in which the membrane potential changes from positive to negative through the isoelectric point. It was characterized by examining the relationship between membrane potential and proton concentration (pH) obtained from both experimental and theoretical considerations. The Nernst-Planck flux equation and the Donnan equilibrium theory were also solved for a four-component system combined with the dissociation constant, in order to discuss the pH dependence of membrane potential in a weak amphoteric membrane by comparing the experimental results with the calculated results. It was proven that the calculated results substantially deviated from the theoretical results despite a similar tendency. Such a deviation was caused by the fact that the original theory disregarded the activity coefficient and the ionic mobility, which were dependent on the fixed charge concentration in a membrane. The original theoretical model was modified by adding the effect of a fixed charge group to the activity coefficient and ionic mobility. The calculated results using the modified model explained well the experimental results if the parameter called charge effectiveness, phi, was introduced into the equations. Introduction of phi into the prediction of membrane potential was already done by Kobatake et al. in a system of a strong polyelectrolyte monopolar membrane/salt aqueous solution. In this study, it was proved that phi can also be introduced into a weak amphoteric polymer membrane/salt aqueous solution system. Finally it was also concluded that the Donnan equilibrium and the Nernst-Planck flux equation were still applicable for examining the transport phenomena for the system of a weak amphoteric charged membrane and electrolyte solutions at various pH.  相似文献   

15.
The preparation of polystyrene-based nickel phosphate membrane at different pressures with varying amounts of material has been described. In order to understand the mechanism of transport of ions, membrane potential measurements were carried out using different concentrations of 1:1 electrolyte (KCl, NaCl and LiCl) solutions and also to evaluate various membrane parameters controlling the transport phenomena. Teorell, Meyer and Sievers (TMS) method was used for the estimation of the thermodynamically effective fixed charge density of membranes. The data were then utilized to calculate membrane potential using the extended TMS theory. It was interesting to note that the theoretical predictions were borne out quite satisfactorily with experimental results. scanning electron microscope (SEM) micrographs of the membranes have also been presented.  相似文献   

16.
Chen H  Sun T  Sui D  Dong J 《Analytica chimica acta》2011,698(1-2):27-35
Cellulose acetate dialysis membrane (CDM) has been used in the diffusive gradients in thin films (DGT) technique, where accurate diffusion coefficients are essential for the assessment of the concentrations of labile metal in solution. Effective concentration difference model (ECDM), based on the assumption that the effective diffusion coefficient of metal ion in the dialysis membrane is determined by the effective concentration difference (ΔC(e)) across the dialysis membrane, is proposed and applied to study the effect of ionic strength, binding agent, ligands and Donnan potential on the effective diffusion coefficient. The effective diffusion coefficients of Cd(2+) through the dialysis membrane immersed in receptor solutions with binding agent were almost the same as those in receptor solutions without binding agent at higher ionic strengths (0.01-1 M) but much higher than those at lower ionic strengths (0.001-0.0001 M). The effective diffusion coefficients of Cd(2+) through the dialysis membrane immersed in deionized water receptor solutions with binding agent were not significantly different from those in synthetic receptor solutions (receptor solutions with various ionic strengths) with binding agent. The DGT-labile fractions were measured in synthetic solutions and natural waters, which indicated that the effective diffusion coefficients, through the dialysis membrane immersed in the deionized water solution with binding agent as receptor solution and in the spiked natural water as source solution, were more suitable for DGT application.  相似文献   

17.
Ionic diffusivity, electrical conductivity, membrane and thermoelectric potentials in isotropic and homogeneous colloidal suspensions, and granular porous media saturated by a binary symmetric 1:1 electrolyte are four interrelated phenomena. The microstructure and the surface properties of the solid grains-water interface influence directly these properties. The ionic diffusivities (and the electrical conductivity, respectively) in colloids and porous media have contributions from diffusion (and electromigration, respectively) through the bulk solution occupying the pores, together with electromigration occurring at the grains-water interface in the electrical double layer. Surface diffusion in porous materials has no contribution from concentration gradients along the grains-water interface. Instead, surface diffusion is envisioned as a purely electromigration process due to the membrane potential. The tortuosities of the transport of anions and cations are equal to the bulk tortuosity of the pore space only at high ionic strength. As the ionic strength decreases, the dominant paths for transport of the ion corresponding to the counterion of the electrical double layer shift from the pore space to the solid grains-water interface. Because anions and cations do not move independently, the membrane potential created by the charge polarization alters the velocity of the anions and influences the mutual diffusivity coefficient of the salt in the porous material. An electric potential of thermal origin is also produced in nonisothermal conditions. The ionic contributions to the electrical conductivity are based on a differential effective medium approach. These ionic contributions to the electrical conductivity are used to derive the ionic diffusivities and the membrane and thermoelectric potentials. The influence of the temperature and the presence, in the pore space, of a second immiscible and nonwetting phase is also considered in this model. Porosity is shown to affect the membrane potential. Several predictions of the model are checked with success by comparing the model to a set of experimental data previously published. Copyright 1999 Academic Press.  相似文献   

18.
Changes in the transport parameters and the chemical nature of the surface of composite polyamide/polysulfone membranes due to both aging and treatment with chemical products (HCl, H(3)NO, and NaOH) have been considered. Hydraulic and salt permeability were obtained from water flow and salt diffusion measurements, respectively, and their values seem to indicate a modification in the structural parameters (porosity/thickness) of aging samples, while HCl and HNO(3) treatments will act in the opposite way. Chemical modifications in the membrane surfaces were studied by X-ray photoelectron spectroscopy (XPS), which mainly show the effect of H(3)NO and HCl on the polyamide active layer of the membranes (polyamide oxidation), but no chemical damage for that sublayer. Electrical characterization of both sublayers of the composite membranes were determined from impedance spectroscopy (IS) measurements using equivalent circuits as models, and these results indicate: (i) a strong increase of the membrane electrical resistance as a consequence of aging, mainly that associated with the active sublayer (30 times higher for an old sample than for a fresh one) and treatment with NaOH; (ii) the reduction of this effect when the samples were treated with HCl and HNO(3) solutions. Changes in the values of the electrical resistance of the composite membranes are in agreement with those obtained for permeabilities, but the electrical parameter also allows the determination of the contribution of each sublayer.  相似文献   

19.
A quick and convenient route to prepare a highly viscoelastic mixture of two oppositely charged polyelectrolytes is presented. The investigation was essentially performed at a fixed total polyelectrolyte concentration. The phase behaviour was studied at varying ratios between the two oppositely charged polyions. The mixtures phase separated associatively at mixing ratios in the vicinity of overall charge neutrality, while by screening the attractive forces with NaCl the precipitate could be dissolved. At certain mixing ratios off charge neutrality the mixtures were highly viscoelastic single-phase solutions in the absence of screening electrolyte. When NaCl was added to such a solution the viscoelasticity decreased strongly since the attractive forces between the oppositely charged polyions were screened. Therefore, by contacting an initially salt free mixture of polyions with a brine solution of known concentration, the diffusion of salt into the polyion matrices could be monitored by following the rheology of the mixture as a function of the contact time. It is shown that the transport of NaCl inside the polyion matrices was diffusion controlled.  相似文献   

20.
The points of zero charge/potential of proteins depend not only on pH but also on how they are measured. They depend also on background salt solution type and concentration. The protein isoelectric point (IEP) is determined by electrokinetical measurements, whereas the isoionic point (IIP) is determined by potentiometric titrations. Here we use potentiometric titration and zeta potential (ζ) measurements at different NaCl concentrations to study systematically the effect of ionic strength on the IEP and IIP of bovine serum albumin (BSA) aqueous solutions. It is found that high ionic strengths produce a shift of both points toward lower (IEP) and higher (IIP) pH values. This result was already reported more than 60 years ago. At that time, the only available theory was the purely electrostatic Debye-Hu?ckel theory. It was not able to predict the opposite trends of IIP and IEP with ionic strength increase. Here, we extend that theory to admit both electrostatic and nonelectrostatic (NES) dispersion interactions. The use of a modified Poisson-Boltzmann equation for a simple model system (a charge regulated spherical colloidal particle in NaCl salt solutions), that includes these ion specific interactions, allows us to explain the opposite trends observed for isoelectric point (zero zeta potential) and isoionic point (zero protein charge) of BSA. At higher concentrations, an excess of the anion (with stronger NES interactions than the cation) is adsorbed at the surface due to an attractive ionic NES potential. This makes the potential relatively more negative. Consequently, the IEP is pushed toward lower pH. But the charge regulation condition means that the surface charge becomes relatively more positive as the surface potential becomes more negative. Consequently, the IIP (measuring charge) shifts toward higher pH as concentration increases, in the opposite direction from the IEP (measuring potential).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号