首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of a receiver using a combined MLSE (maximum likelihood sequence estimation) equalizer/decoder and D-diversity reception is analyzed for multipath Rayleigh fading channels. An upper bound on the (decoded) bit error probability is derived. Comparisons to simulation results show that this upper bound is quite tight when the system has a high signal-to-noise ratio or when diversity reception is used. The upper bound involves an infinite series that must be truncated at a point where the remainder can be safely assumed to be small. An algorithm based on a one-directional stack algorithm is proposed for this calculation because it makes efficient use of computer memory  相似文献   

2.
This paper addresses the problem of channel estimation for direct-sequence code-division multiple-access (DS-CDMA) systems with time-varying multipath fading channels. The multipath fading channels are modeled as autoregressive (AR) models. A method is first proposed to convert the time-varying regression model due to the time-varying nature of users' information symbols into a time-invariant one. Then, a polynomial approach is proposed to obtain the minimum mean square error (MMSE) estimator. The uncertainty of the channel model and decision errors of the DS-CDMA detector are taken into consideration in the design of the MMSE estimator. Compared with the Kalman estimator, the computational complexity of the proposed algorithm is much lower. The simulation results show that the proposed estimator provides a comparable estimation performance with the Kalman estimator and is robust for fast-fading channels.  相似文献   

3.
A new multiple differential detection (MDD) sequence estimator is described which uses a decision feedback for the demodulation of a GMSK signal. This technique is based upon a maximum-likelihood sequence estimation of the transmitted phases rather than on a symbol-by-symbol detection. An upper and a lower bound on the bit error probability of the described detector in the case of an AWGN channel and a two-ray Rayleigh fading channel are derived. The performance of the detection algorithm in a mobile radio communication system is obtained through computer simulation. Comparisons with the coherent detection algorithm show that the proposed detection algorithm is quite attractive both in an AWGN and in a multipath channel  相似文献   

4.
This paper investigates the use of convolutional coding in space-time minimum mean-square-error (MMSE) multiuser-based receivers over asynchronous multipath Rayleigh fading channels. We focus on the performance gain attained through error control coding when used with binary-phase-shift-keyed modulation (BPSK) and multiuser access based on direct sequence-code-division multiple access (DS-CDMA). In our analysis, we derive an approximation for the uncoded probability of bit-error in multipath fading channels. This bit-error rate (BER) approximation is shown to be very accurate when compared to the exact performance. For a convolutionally coded system, we obtain a closed form expression for the bit-error rate upper bound. This error bound is noted to be tight as the number of quantization levels increased beyond eight. Using our theoretical results, we obtain an estimate for the achieved user-capacity that accrues due to error control coding. It is found that using convolutional coding with 3-bit soft-decision decoding, a user-capacity gain as much as 300% can easily be achieved when complete fading state information plus ideal channel interleaving are assumed.  相似文献   

5.
Intercarrier interference caused by fast time-varying multipath fading channels degrades the system performance of high-mobility orthogonal frequency division multiplexing systems. This study considers the challenging problem of joint channel estimation and signal detection in high mobility environments. The estimation method is based on a pilot-aided linear approximation channel modeling and iterative process. After each iteration, the channel estimates are refined with the fed-back detection signal. The channel is re-estimated iteratively, detected increasingly reliable signals. The proposed method is independent of the Doppler-spectrum, delay-profile shape and the number of paths. Numerical simulation results indicate that the proposed method is highly robust to fast time-varying multipath fading channels.  相似文献   

6.
Novel decision-feedback (DF) linear prediction (LP) receivers, which process multiple samples per symbol interval in conjunction with optimal sample combining, are proposed for differential space-time modulation (DSTM) over Rayleigh fast-fading channels. Performance analysis demonstrates that multisampling DF-LP receivers outperform their symbol-rate sampling counterpart in fast fading substantially. In addition, an asymptotically tight upper bound on the pairwise error probability is derived. In view of this bound, the design criterion of DSTM for fast fading is the same as that for block-wise static fading. To avoid the estimation of the second-order statistics of the channel, a polynomial-model-based DF-LP receiver is proposed. It can approach the performance of the optimum DF-LP receiver at high signal-to noise ratios, provided fading is moderate.  相似文献   

7.
Strict upper and lower bounds of exponential-type are derived for the generalized (mth order) Marcum Q-function which enable simple evaluation of a tight upper bound on the average bit-error probability performance of a wide class of noncoherent and differentially coherent communication systems operating over generalized fading channels. For the case of frequency selective fading with arbitrary statistics per independent fading path, the resulting upper hound on performance is expressed in the form of a product of moment generating functions of the instantaneous power random variables that characterize these paths  相似文献   

8.
We analyze the error probability of peaky signaling on bandlimited multipath fading channels, the signaling strategy that achieves the capacity of such channels in the limit of infinite bandwidth under an average power constraint. We first derive an upper bound for general fading, then specialize to the case of Rayleigh fading, where we obtain upper and lower bounds that are exponentially tight and, therefore, yield the reliability function. These bounds constitute a strong coding theorem for the channel, as they not only delimit the range of achievable rates, but also give us a relationship among the error probability, data rate, bandwidth, peakiness, and fading parameters, such as the coherence time. They can be used to compare peaky signaling systems to other large bandwidth systems over fading channels, such as ultra-wideband radio and wideband code-division multiple access. We find that the error probability decreases slowly with the bandwidth W; under Rayleigh fading, the error probability varies roughly as W/sup -/spl alpha//, where /spl alpha/>0. With parameters typical of indoor wireless situations, we study the behavior of the upper and lower bounds on the error probability and the reliability function numerically.  相似文献   

9.
A multiple-signal-classification (MUSIC) approach of estimating the code timings of a desired user is considered for direct-sequence code-division multiple-access (DS-CDMA) multipath-fading channels when exploiting multiple receive antennas with either spatially uncorrelated or fully correlated fading. The acquisition performance of the conventional MUSIC timing estimator employing a single antenna is not good for the small size of observation windows and low signal-to-noise ratios (SNRs). Multiple antennas allow for rapid acquisition and lowers the range of detectable SNR. An efficient and improved MUSIC algorithm of estimating the multipath timings of a desired user for DS-CDMA systems is presented. In multipath-fading channels, the solution of the proposed algorithm is based on successively optimizing the cost function for increasing numbers of multipath delays, which does not require a multidimensional search for multidelay paths. Furthermore, the estimate of code timing at each path is obtained by finding the zeros of second-order polynomials, which is computationally efficient. The proposed MUSIC algorithm significantly improves the acquisition performance of conventional MUSIC algorithm in the presence of multipath time-varying Rayleigh-fading channels with arbitrary time delays. The acquisition performance of multiple antennas-based MUSIC timing estimators is much better than that of a single-antenna-based timing estimator. The Crame/spl acute/r-Rao bound for the code-timing estimator based on multiple antennas is presented.  相似文献   

10.
The signal design problem for FSK communication via fading dispersive channels is considered. The channel is modeled as a linear filter whose time-varying impulse response is a sample function from a zero-mean Gaussian random field of arbitrary WSSUS type. The additive noise component in the received waveforms is supposed to be a zero-mean white Gaussian random process, and maximum likelihood demodulation is assumed. The signal design procedure here adopted consists of minimizing a known upper bound on the error probability, whereas the previous similar design method by Daly intended maximizing an upper bound on the detection probability for radar-astronomy targets. Though with slightly different optimal numerical values, here, as in Daly's problem, the signal design depends on a single parameter which is a simple functional of the channel timefrequency covariance function and of the signal envelope ambiguity function. A detailed example shows how the results of this concise paper can be used to optimize signal parameters and to predict the performance loss due to nonoptimal signal envelopes.  相似文献   

11.
Orthogonal Frequency Division Multiplexing (OFDM) systems are commonly used to mitigate frequency-selective multipath fading and provide high-speed data transmission. In this paper, we derive new union bounds on the error probability of a coded OFDM system in wireless environments. In particular, we consider convolutionally coded OFDM systems employing single and multiple transmit antennas over correlated block fading (CBF) channels with perfect channel state information (CSI). Results show that the new union bound is tight to simulation results. In addition, the bound accurately captures the effect of the correlation between sub-carriers channels. It is shown that as the channel becomes more frequency-selective, the performance get better due to the increased frequency diversity. Moreover, the bound also captures the effect of multi-antenna as space diversity. The proposed bounds can be applied for coded OFDM systems employing different coding schemes over different channel models.  相似文献   

12.
In this paper we present analytical expressions for the lower bounds of the error performance of dual-hop amplify-and-forward transmissions over independent and not necessarily identical Generalized-K fading channels. Using a tight upper bound for the end-to-end SNR, a novel expression for the probability density function is derived. Based on the abovementioned formula, tight lower bounds for the average bit error probability for a variety of modulation schemes are derived. In order to validate the accuracy of the proposed mathematical analysis, various numerical and computer simulation results are presented.  相似文献   

13.
针对瑞利衰落信道下双向多中继协作通信系统,为了降低中断概率,提出了一种基于最小化中断概率的中继选择策略和功率分配方案。首先联合考虑两条链路的中继节点处信噪比和信道增益实现双链路中继选择,然后推导出一种新的最优中继下双向放大转发协作中断概率的近似表达式上界,并利用凸优化求解得到使中断概率最小的最优功率分配解。仿真结果表明,与现有策略相比,提出的策略能够明显降低系统中断概率和误码率,显著提高系统性能。  相似文献   

14.
A closed-form upper bound on the error performance is proposed for LDPC-coded space-time modulation over MIMO block/slow fading channels based on the analysis framework developed for the fast fading case. This follows from the observation that the pairwise error probability (PEP) in all these fading cases is determined by a certain metric of codewords, with respect to which we can enumerate all distinct PEPs and thus concisely formulate the union bound. Simulation results indicate that the bound is useful to benchmark the performance of iterative decoding and detection algorithms  相似文献   

15.
In this letter, we propose an orthogonal spacetime- frequency block code for orthogonal frequency division multiplexing (STFBC-OFDM) systems, newly designed to be robust against both time- and frequency-selective fading. The performance of the proposed system is analyzed in spatially uncorrelated time-varying multipath Rayleigh-fading channels. The analytic results, which closely match the numerical results, show that the proposed system outperforms STBC-OFDM in time-varying channels and SFBC-OFDM in frequency-selective fading channels.  相似文献   

16.
This paper investigates the use of space-time (ST) coding for high-speed data transmission, as well as studies the effect of time delay spread on such scheme over unequalized fading channels. Using a random variable decomposition technique, we present an analytical model and obtain an approximate bound of the pairwise-error probability for ST coded systems over multipath and time-dispersive fading channels. It is shown that the presence of multipath does not reduce the diversity gain provided by the original design criteria, which is adopted to construct specific ST codes in quasi-static flat fading, but the coding gain diminishes due to the effect of multipath fading.  相似文献   

17.
It is well known that multipath fading significantly affects the performance of communication systems. In order to incorporate the impact of this random phenomenon on system analysis and design, in many cases, we need to calculate the probability density function (pdf) of the received signal envelope in multipath fading channels. In this paper, we consider a general multipath fading channel with arbitrary number of paths, where the amplitudes of multipath components are arbitrary correlated positive random variables, independent of phases, whereas the phases are independent and identically distributed random variables with uniform distributions. Since the integral form of the envelope pdf for such a general channel model is too complicated to be used for analytic calculations, we propose two infinite expansions for the pdf: a Laguerre series and a power series. Based on the tight uniform upper bounds on the truncation error of these two infinite series, we show that the Laguerre series is superior to the power series due to the fact that for a fixed number of terms, it yields a smaller truncation error. This Laguerre series with a finite number of terms, which expresses the envelope pdf just in terms of simple polynomial–exponential kernels, is particularly useful for mathematical performance prediction of communication systems in those indoor and outdoor multipath propagation environments, where the number of strong multipath components is small.   相似文献   

18.
The performance of a receiver using a combination of soft-decision decoding and diversity reception is investigated for nonselective multipath Rayleigh fading channels. A new scheme for soft-diversity, soft-decision detection, maximum likelihood selection and decoding (MLSD), is introduced, in which decisions on the diversity channels and decoding are carried out simultaneously by using a trellis and the Viterbi algorithm  相似文献   

19.
We investigate the effect of time delay spread on trellis coded modulation (TCM) in a wireless radio environment where equalization is not employed to mitigate the effects of frequency selective fading when the time delay spread is small. Using a random variable decomposition technique and a Gaussian approximation of the intersymbol interference terms, we obtain explicit bounds for the pairwise error probability of TCM over multipath Rayleigh fading channels characterized by various power delay profiles. A method to calculate an upper bound of the bit error rate (BER) based on Jamali and LeNgoc (1995) bound is also presented. These bounds are used to evaluate TCM performance as well as investigate the delay spread tolerance limit of TCM, including I-Q TCM, over frequency selective fading channels  相似文献   

20.
Error-control codes can help to mitigate atmospheric turbulence-induced signal fading in free-space optical communication links using intensity modulation/direct detection (IM/DD). Error performance bound analysis can yield simple analytical upper bounds or approximations to the bit-error probability. We first derive an upper bound on the pairwise codeword-error probability for transmission through channels with correlated turbulence-induced fading, which involves complicated multidimensional integration. To simplify the computations, we derive an approximate upper bound under the assumption of weak turbulence. The accuracy of this approximation under weak turbulence is verified by numerical simulation. Its invalidity when applied to strong turbulence is also shown. This simple approximate upper bound to the pairwise codeword-error probability is then applied to derive an upper bound to the bit-error probability for block codes, convolutional codes, and turbo codes for free-space optical communication through weak atmospheric turbulence channels. We also discuss the choice of interleaver length in block codes and turbo codes based on numerical evaluation of our performance bounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号