首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In the olfactory bulb (OB) of zebrafish and other species, odors evoke fast oscillatory population activity and specific firing rate patterns across mitral cells (MCs). This activity evolves over a few hundred milliseconds from the onset of the odor stimulus. Action potentials of odor-specific MC subsets phase-lock to the oscillation, defining small and distributed ensembles within the MC population output. We found that oscillatory field potentials in the zebrafish OB propagate across the OB in waves. Phase-locked MC action potentials, however, were synchronized without a time lag. Firing rate patterns across MCs analyzed with low temporal resolution were informative about odor identity. When the sensitivity for phase-locked spiking was increased, activity patterns became progressively more informative about odor category. Hence, information about complementary stimulus features is conveyed simultaneously by the same population of neurons and can be retrieved selectively by biologically plausible mechanisms, indicating that seemingly alternative coding strategies operating on different time scales may coexist.  相似文献   

2.
Here we describe several fundamental principles of olfactory processing in the Drosophila melanogaster antennal lobe (the analog of the vertebrate olfactory bulb), through the systematic analysis of input and output spike trains of seven identified glomeruli. Repeated presentations of the same odor elicit more reproducible responses in second-order projection neurons (PNs) than in their presynaptic olfactory receptor neurons (ORNs). PN responses rise and accommodate rapidly, emphasizing odor onset. Furthermore, weak ORN inputs are amplified in the PN layer but strong inputs are not. This nonlinear transformation broadens PN tuning and produces more uniform distances between odor representations in PN coding space. In addition, portions of the odor response profile of a PN are not systematically related to their direct ORN inputs, which probably indicates the presence of lateral connections between glomeruli. Finally, we show that a linear discriminator classifies odors more accurately using PN spike trains than using an equivalent number of ORN spike trains.  相似文献   

3.
In both the vertebrate nose and the insect antenna, most olfactory receptor neurons (ORNs) respond to multiple odors. However, some ORNs respond to just a single odor, or at most to a few highly related odors. It has been hypothesized that narrowly tuned ORNs project to narrowly tuned neurons in the brain, and that these dedicated circuits mediate innate behavioral responses to a particular ligand. Here we have investigated neural activity and behavior downstream from two narrowly tuned ORN types in Drosophila melanogaster. We found that genetically ablating either of these ORN types impairs innate behavioral attraction to their cognate ligand. Neurons in the antennal lobe postsynaptic to one of these ORN types are, like their presynaptic ORNs, narrowly tuned to a pheromone. However, neurons postsynaptic to the second ORN type are broadly tuned. These results demonstrate that some narrowly tuned ORNs project to dedicated central circuits, ensuring a tight connection between stimulus and behavior, whereas others project to central neurons that participate in the ensemble representations of many odors.  相似文献   

4.
In the olfactory organ of the squid, Lolliguncula brevis there are five morphological types of olfactory receptor neurons (ORNs). Previous work to characterize odor sensitivity of squid ORNs was performed on only two of the five types in dissociated primary cell cultures. Here, we sought to establish the odorant responsiveness of all five types. We exposed live squid or intact olfactory organs to excitatory odors plus the activity marker, agmatine (AGB), an arginine derivative that enters cells through nonselective cation channels. An antibody against AGB was used to identify odorant‐activated neurons. We were able to determine the ORN types of AGB‐labeled cells based on their location in the epithelium, morphology and immunolabeling by a set of metabolites: arginine, aspartate, glutamate, glycine, and glutathione. Of 389 neurons identified from metabolite‐labeled tissue, 3% were type 1, 32% type 2, 33% type 3, 15% type 4, and 17% type 5. Each ORN type had different odorant specificity with type 3 cells showing the highest percentages of odorant‐stimulated AGB labeling. Type 1 cells were rare and none of the identified type 1 cells responded to the tested odorants, which included glutamate, alanine and AGB. Glutamate is a behaviorally attractive odorant and elicited AGB labeling in types 2 and 3. Glutamate‐activated AGB labeling was significantly reduced in the presence of the adenylate cyclase inhibitor, SQ22536 (80 μM). These data suggest that the five ORN types differ in their relative abundance and odor responsiveness and that the adenylate cyclase pathway is involved in squid olfactory transduction. Anat Rec, 291:763‐774, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
The projections and odor responses of mammalian olfactory receptor neurons, as well as the physiology of the bulb's principal neurons-the mitral cells (MCs)-are known from studies in slices and anesthetized animals. In behaving rats trained to discriminate between two odors associated with different reinforcers, we examined MC responses following alternated odor-reinforcer pairings. Whereas only 11% of the recorded MCs showed changes in odor-selective firing rate during the odor-sampling phase, 94% of MCs modulated activity during specific behaviors surrounding odor sampling. These cell- and odor-selective responses were not primary sensory responses; rather, they depended (reversibly) on the predictive value of each odor. MC activity thus depends critically on efferent influences linked to the animal's experience and behavior.  相似文献   

6.
Although D2 dopamine receptors have been localized to olfactory receptor neurons (ORNs) and dopamine has been shown to modulate voltage-gated ion channels in ORNs, dopaminergic modulation of either odor responses or excitability in mammalian ORNs has not previously been demonstrated. We found that <50 microM dopamine reversibly suppresses odor-induced Ca2+ transients in ORNs. Confocal laser imaging of 300-microm-thick slices of neonatal mouse olfactory epithelium loaded with the Ca(2+)-indicator dye fluo-4 AM revealed that dopaminergic suppression of odor responses could be blocked by the D2 dopamine receptor antagonist sulpiride (<500 microM). The dopamine-induced suppression of odor responses was completely reversed by 100 microM nifedipine, suggesting that D2 receptor activation leads to an inhibition of L-type Ca2+ channels in ORNs. In addition, dopamine reversibly reduced ORN excitability as evidenced by reduced amplitude and frequency of Ca2+ transients in response to elevated K(+), which activates voltage-gated Ca2+ channels in ORNs. As with the suppression of odor responses, the effects of dopamine on ORN excitability were blocked by the D2 dopamine receptor antagonist sulpiride (<500 microM). The observation of dopaminergic modulation of odor-induced Ca2+ transients in ORNs adds to the growing body of work showing that olfactory receptor neurons can be modulated at the periphery. Dopamine concentrations in nasal mucus increase in response to noxious stimuli, and thus D2 receptor-mediated suppression of voltage-gated Ca2+ channels may be a novel neuroprotective mechanism for ORNs.  相似文献   

7.
Glomeruli in the vertebrate olfactory bulb (OB) appear as anatomically discrete modules receiving direct input from the olfactory epithelium (OE) via axons of olfactory receptor neurons (ORNs). The response profiles with respect to amino acids (AAs) of a large number of ORNs in larval Xenopus laevis have been recently determined and analysed. Here we report on Ca2+ imaging experiments in a nose–brain preparation of the same species at the same developmental stages. We recorded responses to AAs of glomeruli in the OB and determined the response profiles to AAs of individual glomeruli. We describe the general features of AA-responsive glomeruli and compare their response profiles to AAs with those of ORNs obtained in our previous study. A large number of past studies have focused either on odorant responses in the OE or on odorant-induced responses in the OB. However, a thorough comparison of odorant-induced responses of both stages, ORNs and glomeruli of the same species is as yet lacking. The glomerular response profiles reported herein markedly differ from the previously obtained response profiles of ORNs in that glomeruli clearly have narrower selectivity profiles than ORNs. We discuss possible explanations for the different selectivity profiles of glomeruli and ORNs in the context of the development of the olfactory map.  相似文献   

8.
9.
It has been investigated feeding related LHA neuronal activity and responses to odor stimulation in rats at various levels of satiation. Extracellular responses of 168 neurons to three odors, isoamylacetate (AA), cineole (CL), and isovaleric acid (VA), were recorded from 168 LHA neurons of Wistar-SPF male rats. Of 168 units, 107 (63.7%) responded to from one to three odors, but not to light or phonic stimulation. Of the responding units, 94.4% (101/107) were excited, and 5.6% were inhibited. In response to a single electrical stimulation (0.5 msec, 1-10 V) of the OB, 61 units were excited with latencies of 6-43 msec (19.8 +/- 12.0 msec, mean +/- S.D.) indicating compound OB-LHA relations--mono- and polysynaptic through myelinated and nonmyelinated fibers. The results suggest predominantly excitatory effects of both electrical stimulation of the OB and odor stimulation on the LHA. Firing frequency in response to AA or VA was significantly (p less than 0.05) greater for the long fasting group (38 hr, LF, n = 8) than for the NF (nonfasting, n = 12) group; differences between the LF and MF (24 hr, n = 6) groups were not significant. Glucose-sensitive neurons (GSN, n = 19) responded more to odors than non-GSNs (n = 86), and discharge frequency increase depended markedly on food deprivation. Food deprivation results suggest that responsiveness of feeding related LHA neurons to odors depends on the degree of satiation. In conclusion, it was confirmed that olfactory functions are important in the responses of hypothalamic feeding related neurons.  相似文献   

10.
The ON and OFF olfactory receptor neurons (ORNs) on the antenna of the American cockroach respond to the same changes in the concentration of the odor of lemon oil, but in the opposite direction. The same jump in concentration raises impulse frequency in the ON and lowers it in the OFF ORN and, conversely, the same concentration drop raises impulse frequency in the OFF and lowers it in the ON ORN. When the new concentration level is maintained, it becomes a background concentration and affects the responses of the ON and OFF ORNs to superimposed changes. Raising the background concentration decreases both the ON-ORN's response to concentration jumps and the OFF-ORN's response to concentration drops. In addition, the slopes of the functions approximating the relationship of impulse frequency to concentration changes become flatter for both types of ORNs as the background concentration rises. The progressively compressed scaling optimizes the detection of concentration changes in the low concentration range. The loss of information caused by the lower differential sensitivity in the high concentration range is partially compensated by the higher discharge rates of the OFF ORNs. The functional asymmetry of the ON and OFF ORNs, which reflects nonlinearity in the detection of changes in the concentration of the lemon oil odor, improves information transfer for decrements in the high concentration range.  相似文献   

11.
Odorant specificity to l-alpha-amino acids was determined electrophysiologically for 93 single catfish olfactory receptor neurons (ORNs) selected for their narrow excitatory molecular response range (EMRR) to only one type of amino acid (i.e., Group I units). These units were excited by either a basic amino acid, a neutral amino acid with a long side chain, or a neutral amino acid with a short side chain when tested at 10(-7) to 10(-5) M. Stimulus-induced inhibition, likely for contrast enhancement, was primarily observed in response to the types of amino acid stimuli different from that which activated a specific ORN. The high specificity of single Group I ORNs to type of amino acid was also previously observed for single Group I neurons in both the olfactory bulb and forebrain of the same species. These results indicate that for Group I neurons olfactory information concerning specific types of amino acids is processed from receptor neurons through mitral cells of the olfactory bulb to higher forebrain neurons without significant alteration in unit odorant specificity.  相似文献   

12.
Responses of single neurons in the olfactory bulb of anesthetized hamsters were recorded extracellularly while odors of defined concentration and time course were delivered to the olfactory system at constant flow. Responses could be either excitatory or suppressive, as judged by the first distinguishable change in firing rate during odor delivery. However, when the time course of the response was examined in more detail, approximately one-third of all tests and one-half of the tests at high concentration resulted in complex temporal patterns of firing rate that involved both increases and decreases with respect to spontaneous activity. Approximately two-thirds of all tests produced responses where increased firing rate preceded any distinguishable suppression. Excitatory and suppressive responses were each classified into four groups according to their temporal patterns. Different patterns were not equally represented in the data and the proportions of patterns elicited by the same odor changed with stimulus intensity. Complex responses, where temporal patterns included periods of firing rate above and below spontaneous rate, were increasingly common and intensity was increased. Magnitude of response is difficult to define when a single response includes both increases and decreases of firing rate but more than half of the neurons that responded to more than one stimulus concentration clearly had nonmonotonic intensity-response functions. Forty-one out of 101 neurons were classified as output cells because they could be driven at short constant latency by lateral olfactory tract stimulation. Their responses were not clearly different from the remaining cells that could not be classified as output cells. The contribution of the inhibitory circuits of the olfactory bulb to the generation of patterned response and to changes in pattern with intensity are discussed. The lateral inhibitory circuits of the bulb appear to be sufficient to explain the data presented here.  相似文献   

13.
Recognition of individual conspecifics is important for social behavior and requires the formation of memories for individually distinctive social signals. Individual recognition is often mediated by olfactory cues in mammals, especially nocturnal rodents such as golden hamsters. In hamsters, this form of recognition requires main olfactory system input to the lateral entorhinal cortex (LEnt). Here, we tested whether neurons in LEnt and the nearby ventral subiculum (VS) would show cellular correlates of this natural form of recognition memory. Two hundred ninety single neurons were recorded from both superficial (SE) and deep layers of LEnt (DE) and VS while male hamsters investigated volatile odorants from female vaginal secretions. Many neurons encoded differences between female's odors with many discriminating between odors from different individual females but not between different odor samples from the same female. Other neurons discriminated between odor samples from one female and generalized across collections from other females. LEnt and VS neurons showed enhanced or suppressed cellular activity during investigation of previously presented odors and in response to novel odors. A majority of SE neurons decreased firing to odor repetition and increased activity to novel odors. In contrast, DE neurons often showed suppressed activity in response to novel odors. Thus, neurons in LEnt and VS of male hamsters encode information that is critical for the identification and recognition of individual females by odor cues. This study reveals cellular mechanisms in LEnt and VS that may mediate a natural form of recognition memory in hamsters. These neuronal responses were similar to those observed in rats and monkeys during performance in standard recognition memory tasks. Consequently, the present data extend our understanding of the cellular basis for recognition memory and suggest that individual recognition requires similar neural mechanisms as those employed in laboratory tests of recognition memory.  相似文献   

14.
Olfactory receptor neurons (ORNs) respond to odorants with changes in the action potential firing rate. Excitatory responses, consisting of firing increases, are mediated by a cyclic AMP cascade that leads to the activation of cationic nonselective cyclic nucleotide-gated (CNG) channels and Ca2+-dependent Cl- (ClCa) channels. This process takes place in the olfactory cilia, where all protein components of this cascade are confined. ORNs from various vertebrate species have also been shown to generate inhibitory odor responses, expressed as decreases in action potential discharges. Odor inhibition appears to rely on Ca2+-dependent K+ (KCa) channels, but the underlying transduction mechanism remains unknown. If these channels are involved in odor transduction, they are expected to be present in the olfactory cilia. We found that a specific antibody against a large conductance KCa recognized a protein of approximately 116 kDa in Western blots of purified rat olfactory ciliary membranes. Moreover, the antibody labeled ORN cilia in isolated ORNs from rat and toad (Caudiverbera caudiverbera). In addition, single-channel recordings from inside-out membrane patches excised from toad chemosensory cilia showed the presence of 4 different types of KCa channels, with unitary conductances of 210, 60, 12, and 29 and 60 pS, high K+-selectivity, and Ca2+ sensitivities in the low micromolar range. Our work demonstrates the presence of K+ channels in the ORN cilia and supports their participation in odor transduction.  相似文献   

15.
16.
Stimulation of olfactory receptor neurons (ORNs) with odors elicits an increase in the concentration of cAMP leading to opening of cyclic nucleotide-gated (CNG) channels and subsequent depolarization. Although opening of CNG channels is thought to be the main mechanism mediating signal transduction, modulation of other ion conductances by odorants has been postulated. To determine whether K+ conductances are modulated by odorants in mammalian ORNs, we examined the response of rat ORNs to odors by recording membrane current under perforated-patch conditions. We find that rat ORNs display two predominant types of responses. Thirty percent of the cells responded to odorants with activation of a CNG conductance. In contrast, in 55% of the ORNs, stimulation with odorants inhibited a voltage-activated K+ conductance (IKo). In terms of pharmacology, ion permeation, outward rectification, and time course for inactivation, IKo resembled a delayed rectifier K+ conductance. The effect of odorants on IKo was specific (only certain odorants inhibited IKo in each ORN) and concentration dependent, and there was a significant latency between arrival of odorants to the cell and the onset of suppression. These results indicate that indirect suppression of a K+ conductance (IKo) by odorants plays a role in signal transduction in mammalian ORNs.  相似文献   

17.
In the olfactory bulb, GABA(B) receptors are selectively located in the glomerular layer. A current hypothesis is that GABAergic inhibition mediated through these receptors would be, at least partly, presynaptic and would exerted by decreasing the release of the olfactory receptor neuron excitatory neurotransmitter. Here, we assessed, in the frog, the in vivo action of baclofen, a GABA(B) agonist, on single-unit mitral cell activity in response to odors. Local application of baclofen in the glomerular region of the olfactory bulb was shown to drastically affect mitral cell spontaneous activity, since they became totally silent. Moreover, under baclofen, mitral cells still responded to odors and still specified odor concentration increases through their temporal response patterns. The pharmacological specificity of the GABA(B) agonist action was confirmed by showing that saclofen, a GABA(B) antagonist, partly prevented the inhibitory action of baclofen and restored the initial rate of mitral cell spontaneous activity.The results show that GABA(B)-mimicked inhibition suppressed mitral cell spontaneous activity while odor responses were maintained. This suggests that olfactory receptor neurons partly drive spontaneous mitral cell activity. Moreover, the effect of GABA(B)-mediated inhibition was seen to be very close to that described previously for dopamine D(2) receptor-mediated inhibition. In conclusion, we propose that these two inhibitory mechanisms would offer the possibility to reduce or suppress mitral cell spontaneous activity so as to make their responses to odor especially salient.  相似文献   

18.
1. Neonatal rat pups were classically conditioned to an odor stimulus from postnatal day 1 (PN1) to PN18. Tactile stimulation (stroking) was used as the unconditioned stimulus. On PN19, mitral/tufted cell single-unit responses to the conditioned odor were examined in both conditioned and control pups. Recordings were made from mitral/tufted cells in two regions of the olfactory bulb: 1) an area typically associated with focal [14C]2-deoxyglucose (2-DG) uptake in response to the conditioned odor and 2) an area distant from focal 2-DG uptake to the conditioned odor. Animals were anesthetized with urethane and were naturally respiring during the single-unit recording procedure. 2. Changes in mitral/tufted cell firing rate in response to odors in both bulbar regions and all training groups were classified as either excitatory, suppressive, or no response. This response classification was used to compare response patterns to the conditioned odor between bulbar regions and training groups. 3. Classical conditioning selectively modified the response patterns of mitral/tufted cells to the conditioned odor when those cells were associated with regions of focal 2-DG uptake for that odor. Mitral/tufted cells demonstrated significantly more suppressive and fewer excitatory responses to the conditioned odor than cells in control pups. Response patterns to a novel odor were not similarly modified. 4. Response patterns of mitral/tufted cells distant from the focal region of 2-DG uptake to the conditioned odor were not modified by conditioning compared with control pups. 5. The difference in response pattern between cells in the 2-DG focus and cells distant to the 2-DG focus was apparent within 500 ms of the stimulus onset. Given the respiratory rate of these pups (2 Hz), these data suggest that the modified response pattern occurred on the first inhalation of the learned odor. 6. These data demonstrate that both spatial and temporal patterns of olfactory bulb output neuron activity are used in the coding of olfactory information in the bulb. Furthermore, these spatial/temporal response patterns can be modified by early learning.  相似文献   

19.
The primary olfactory brain center, the antennal lobe (AL) in insects or the olfactory bulb in vertebrates, is a notable example of a neural network for sensory processing. While physiological properties of the input, the olfactory receptor neurons, have become clearer, the operation of the network itself remains cryptic. Therefore we measured spatio-temporal odor-response patterns in the output neurons of the olfactory glomeruli using optical imaging in the honeybee Apis mellifera. We mapped these responses to identified glomeruli, which are the structural and functional units of the AL. Each odor evoked a complex spatio-temporal activity pattern of excited and inhibited glomeruli. These properties were odor- and glomerulus-specific and were conserved across individuals. We compared the spatial pattern of excited glomeruli to previously published signals, which derived mainly from the receptor neurons, and found that they appeared more confined, showing that inhibitory connections enhance the contrast between glomeruli in the AL. To investigate the underlying mechanisms, we applied GABA and the GABA-receptor antagonist picrotoxin (PTX). The results show the presence of two separate inhibitory networks: one is GABAergic and modulates overall AL activity, the other is PTX-insensitive and glomerulus-specific. Inhibitory connections of the latter network selectively inhibit glomeruli with overlapping response profiles, in a way akin to "lateral" inhibition in other sensory systems. Selectively inhibited glomeruli need not be spatial neighbors. The net result is a globally modulated, contrast-enhanced and predictable representation of odors in the olfactory output neurons.  相似文献   

20.
Vertebrate olfactory receptor neurons (ORNs) transduce odor stimuli into electrical signals by means of an adenylyl cyclase/cAMP second messenger cascade, but it remains widely debated whether this cAMP cascade mediates transduction for all odorants or only certain odor classes. To address this problem, we have analyzed the generator currents induced by odors that failed to produce cAMP in previous biochemical assays but instead produced IP(3) ("IP(3)-odors"). We show that in single salamander ORNs, sensory responses to "cAMP-odors" and IP(3)-odors are not mutually exclusive but coexist in the same cells. The currents induced by IP(3)-odors exhibit identical biophysical properties as those induced by cAMP odors or direct activation of the cAMP cascade. By disrupting adenylyl cyclase to block cAMP formation using two potent antagonists of adenylyl cyclase, SQ22536 and MDL12330A, we show that this molecular step is necessary for the transduction of both odor classes. To assess whether these results are also applicable to mammals, we examine the electrophysiological responses to IP(3)-odors in intact mouse main olfactory epithelium (MOE) by recording field potentials. The results show that inhibition of adenylyl cyclase prevents EOG responses to both odor classes in mouse MOE, even when "hot spots" with heightened sensitivity to IP(3)-odors are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号