首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel red emitting phosphor Gd2(MoO4)3:Eu^3+ was prepared by solid reaction, using Gd2O3, Eu2O3 and WO3 as starting matedals and NH4F as flux. The effects of flux content and Eu^3+ concentration on the crystal structure, morphology and luminescent properties were investigated using XRD, SEM and fluorescent spectrum measurement. The XRD patterns showed that the resultants had the monoclinic structure. With the increase in flux amount, their crystallization significantly improved. The SEM images indicated that the mean size of the phosphor particles was around 2 μm, and agglomeration of the phosphor particles appeared while introducing higher flux amount. The excitation spectra exhibited more intense f-f transitions originating from ground state 7^F0 to upper states 5^L6 and 5^D2 than the charge transfer band. The concentration quenching of Eu^3+ emission indicated that energy transfer from Eu^3+ to molybdate host existed even at lower Eu^3+ concentration.  相似文献   

2.
由高温固相反应首次合成Li2(Gd1-xEux)4(MoO4)7(0相似文献   

3.
Sinceaza crownethershowsspecialcoordinationpropertiestotransitionmetalandheavymetalions[1,2 ] ,therearemanyreportsofthecomplexesinhost guestchemistry ,molecularrecognition[3 ,4] andionophoreinmembranetransportation[5] ,butthereislittlereportontheirrareearthscomplexesandthefluorescenceaboutthecomplexes[6] ,andthefluorescenceintensityoftheircomplexesarenotverystrong .Weinsetbenzoylgroupintothemacrocycle ,expectingthatitsrareearthscomplexeshavebetterfluorescenceproperties .Inthispaperthesynthesis…  相似文献   

4.
The Ba3Y2(BO3)4:Eu^3+ phosphor was synthesized using a high temperature solid-state reaction method and the luminescent characteristics were investigated. The emission spectrum exhibited one strong red emission at 613 nm, corresponding to the electric dipole 5D0-TF2 transition of Eu^3+, under 365 nm excitation. The excitation spectrum of 613 nm indicated that the Ba3Y2(BO3)n:Eu^3+ phosphor was effectively excited by ultraviolet (UV) (254, 365 and 400 nm) and blue (470 nm) light. The effect of Eu^3+ concentration on the 613 nm emission of the Ba3Y2(BO3)n:Eu^3+ phosphor was measured. The results showed that the emission intensity increased with increasing Eu^3+ concentration, and then decreased. The CIE color coordinates of Ba3Y2(BO3)4:Eu^3+ phosphor were x=0.641 and y=0.359 at 15 mol.% Eu^3+.  相似文献   

5.
A new complex Eu2(PA)6(phen)2 was prepared with hydrothermal reaction using EuCl3.6H2O, phenylmalonic acid (H2phma), and 1, 10-phenanthroline (phen), where PA was the decarboxylated product of HEphma, phenylacetate. The crystal structure of the title complex was determined with the X-ray diffraction. The title complex was a binuclear molecule with an inversion center. Each Eu^3+ ion was nine-coordinated with two nitrogen atoms from one phen molecule and seven oxygen atoms from five PA ligands. The carboxylic groups were bonded to the Eu^3+ ion in three modes, the chelating bidentate, the bridging bidentate, and the bridging-chelating tridentate. The complex emits intense red fluorescence under ultraviolet light. The luminescence peaks correspond to the characteristic emission 5D0→7FJ (J=0-4) transitions of the Eu^3+ ion.  相似文献   

6.
均匀共沉淀法合成纳米Gd_2O_3:Eu粉体及其发光特性   总被引:1,自引:0,他引:1  
以六次甲基网胺(hexamethylenetetramine,(CH2)6N4,HMT)为沉淀剂,在GdCl3和EuCl3混合溶液中,利用均匀共沉淀法制得了纳米颗粒.结果表明,获得的Gd2O3:Eu纳米颗粒近似为球形,尺寸均匀,平均粒径为100 nm,且每个球形颗粒由平均粒径为20 nm的微晶聚并而成.Gd2O3:Eu荧光粉在波长612 nm的红光发射来自Eu3+的5D0-7F2电偶极跃迁,发光强度随煅烧温度提高而增强,随Eu3+掺杂摩尔分数的提高而增强.Eu3+掺杂摩尔分数超过7%时,发生浓度淬灭,发光强度减弱.  相似文献   

7.
Using CaCO3, metal oxides (all dissolved by nitric acid) and tetraethoxysilane Si (OC2H5 )4 (TEOS) as the main starting materials, Ca2Y8 (SiO4 )6O2: Eu3 phosphors were synthesized by spray pyrolysis.X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting phosphors.The results of XRD indicated that the 1000 ℃ annealed powders crystallize with the silicate oxyapatite structure.SEM study revealed that the phosphors consist of spherical particles with an average size of about 1 ~ 3 μm.In the crystalline Ca2 Y8 (SiO4)6O2: Eu3 phosphor, the Eu3 shows its characteristic emission corresponding to 5 D0 - 7 FJ ( J = 0, 1,2, 3, 4) transitions, with 5D0 - 7 F2 red emission (613 nm) as the most prominent group, agreeing well with the structure of the host material.  相似文献   

8.
利用水热法制备了性能稳定的红色荧光粉LaPO4:Eu3+,同时研究了不同的Eu3+浓度、煅烧温度对荧光粉发光性能的影响.通过X射线粉末衍射(XRD)和扫描电子显微镜(SEM)来表征荧光粉的晶体结构和颗粒大小及形貌;用激发光谱和发射光谱以及荧光衰减曲线来表征荧光粉的荧光性能.结果表明:未煅烧时前躯体主要是六方晶相LaPO4·0.5H2O,煅烧温度在900℃时,所制备样品为单斜相LaPO4:Eu3+;SEM图像显示5 at.%Eu3+掺杂LaPO4呈椭球形,颗粒长约为500 nm,宽约为300 nm.最大发射波长和激发波长分别为592 nm和393 nm,发射光谱中592 nm和612 nm的发射峰对应的是Eu3+离子的5D0→7F1和5D0→7F2跃迁.其荧光寿命为3.32 ms.  相似文献   

9.
Glasses with chemical composition of (in mol.%): 26 RF-20 PbO-10 TeO2-43 H3BO3-1 EuO3 (RLTB) were prepared by conventional melt quenching method. The Judd-Ofelt intensity parameters Ω2 and Ω6 were obtained from the absorption intensities of 7F0→5D2 and 7F0→5L6 transitions, respectively. In order to overcome the problem of applicability of Judd-Ofelt analysis at room temperature due to the overlapping of the transitions originating from 7F0 and 7F1 levels of Eu3+ ion, the effect of the thermalization on the population of energy levels was taken into account. The photoluminescence spectra contained five emission bands originating from the 5D0 metastable state to 7FJ (J=0, 1, 2, 3, 4) lower lying states. The decay profiles were found to be single exponential in all the three glasses. The measured lifetimes (τmes) were in good agreement with the calculated lifetimes (τcal) obtained by using the thermally corrected Judd-Ofelt intensity parameters.  相似文献   

10.
Eu3+-doped (Y,Gd)NbO4 phosphor was synthesized by solid-state reaction for possible application in cold cathode fluorescent lamps. A broad absorption band with peak maximum at 272 nm was observed which was due to the charge transfer between Eu3+ ions and neighboring oxygen anions. A deep red emission at the peak wavelength of 612 nm was observed which could be attributed to the 5D0→7F2 transition in Eu3+ ions. The highest luminance for Y1-x-yGdyNbO4:Eux3+ under 254 nm excitation was achieved at Eu3+ concentration of 18 mol.% (x=0.18) and Gd3+ concentration of 8.2 mol.% (y=0.082). The luminance of Y0.738Gd0.082NbO4:Eu3+0.18 was higher than that of a typical commercial phosphor Y2O3:Eu3+ and the CIE chromaticity coordinate was (0.6490, 0.3506), which was deeper than that of Y2O3:Eu3+. The particle size of the synthesized phosphors was controlled by the NaCl flux and particle size as high as 8 μm with uniform size distribution of particles was obtained.  相似文献   

11.
Eu3+ and Ce3+ co-doped YPO4 microspheres were synthesized by hydrothermal method without template. The emission spectra showed that the red emission centered at 618nm could be readily increased relatively to the orange emission centered at 590nm by controlling the doping concentration of Ce3+ ion. The investigation based on excitation spectra and decay curves demonstrated that the doped Ce3+ ions took two efficient energy transfers to Eu3+ ions and affected the lifetime of the emission states of Eu3+ ions so that the emission spectra of Eu3+ ion were accordingly tuned with the Ce3+ content increasing. This controllable red (5D0→7F2) to orange ( 5D0→7F1) emission ratio of YPO4:Eu3+,Ce3+ made it very promising for encoded anti-fake labels and bio-labels.  相似文献   

12.
Uniform core-shell Eu3+:Y2O3/SiO2 spheres were synthesized via precipitation and the Stber method.The structural transition of core-shell Eu3+:Y2O3/SiO2 was studied by using high pressure photoluminescence spectra.With pressure increasing,the emission intensities of 5D0→7F0,1,2 transitions of Eu3+ ions decreased and the transition lines showed a red shift.The relative luminescence intensity ratio of 5D0→7F2 to 5D0→7F1 transitions decreased with increasing pressure,indicating lowering asymmetry around Eu3+ ions.During compression,structural transformation for cores in the present core-shell Eu3+:Y2O3/SiO2 sample from cubic to monoclinic took place at 7.5 GPa,and then the monoclinic structure turned into hexagonal above 15.2 GPa.After the pressure was released,the hexagonal structure transformed back to monoclinic and the monoclinic structure was kept stable to ambient pressure.  相似文献   

13.
Rare earth ions doped gadolinium oxybromide phosphors GdOBr:RE3 (RE=Eu, Tb, Ce) were synthesized by the method of solid-state reaction at high temperature, and the VUV-VIS spectroscopic properties of the phosphors were systematically investigated. Under the excitation of VUV or UV source, the phosphors doped with Eu3 and Tb3 show a bright and sharp emission at around 620 nm corresponding to the forced electric dipole 5D0→7F2 transition of Eu3 , and at around 544 nm corresponding to the 5D4→7F5 transition of Tb3 , respectively. For GdOBr:Ce3 , a broader and intense emission spanned 370-500 nm corresponding to the d-f transition of Ce3 was observed. The excitation spectra were also analyzed.  相似文献   

14.
Excitation and emission spectra of new borate La2CaB10O19 doped Eu3 in VUV-VIS range, high resolution emission spectra at room temperature and lifetime of Eu3 were investigated. The emission line at about 616 nm attributed to the 5D0-7F2 transition of Eu3 is the most intense emission of Eu3 . The broad band at about 244 nm is originated from charge transition band (CTB) of O2-→Eu3 . According to the numbers of spectral lines 5D0-7F0 and 5D0-7F1 in high-resolution spectrum, Eu3 ions occupy two crystallographic sites. The lifetimes of 5D0-7F0 transition of Eu3 of two kinds of lattice sites are individually 2.1 and 2.6 ms, and both are exponential decay. In the VUV excitation spectrum, complicated band between 130 and 170 nm consists of host absorption and f-d transition of Eu3 .  相似文献   

15.
Under 980 nm laser excitation,red emission(5D0-7FJ(J=0,1,2)) of Eu3+ was observed in cubic Y2O3 codoped with Eu3+ and Yb3+.The dependence of the upconverted emission on doping concentration and laser power was studied.Yb3+ emission around 1000 nm(2F5/2-2F7/2) was reported upon excitation of Eu3+ ions.The decay curves of 5DJ(J=0,2) emission of Eu3+ under excitation of 266 nm pulse laser were examined to investigate the Eu3+→Yb3+ energy transfer process.Cooperative energy transfer process was discussed as the possible mechanism for the visible up-conversion luminescence of Eu3+ and near-infrared down-conversion emission of Yb3+.  相似文献   

16.
The samples of YVO4·xTa2O5:Eu3+(x=0.45,0.35,0.25,0.15,0.05)were synthesized by the conventional solid state reaction.The structure of the prepared sample was checked by the X-ray diffraction.XRD measurements at room temperature were confirmed that the prepared YVO4·xTa2O5:Eu3+ consisted of two phases。One phase was YVO4,which is tetragonal according with the JCPDS-Card(17-0341);the other phase was YTaO4,which is according with the JCPDS-Card(72-2018).The spectrum property of the sample was studied under the VUV.The effects of Ta doped on the luminescent properties of sample were investigated and it was found that some Ta doped could highlight the absorption of matrix in VUV region.The emission spectrum was dominated by the red peaks at 613 and 619 nm due to the electric dipole transition 5D0→7F2 of Eu3+.It indicated that Eu3+ occupied a site lacking inversion symmetry.There was one band peaked at 155 nm in the excitation spectrum of the sample,it could be assigned to the absorption of the host.  相似文献   

17.
The europium-doped LaF3 nanoparticles were prepared by refluxing method in glycerol/water mixture and characterized with X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), UV-vis diffuse reflectance spectrum, and photoluminescence spectra. The results of XRD indicated that the obtained LaF3: Eu3+ nanoparticles were well crystallized with a hexagonal structure. The FE-SEM image illustrated that the LaF3: Eu3+ nanoparticles were spherical with an average size around 30 nm. Under irradiation of UV light, the emission spectrum of LaF3: Eu3+ nanoparticles exhibited the characteristic line emissions arising from the 5D0→7FJ (J=1, 2, 3, 4) transitions of the Eu3+ ions, with the dominating emission centered at 590 nm. In addition, the emissions from the 5D1 level could be clearly observed due to the low phonon energies (-350 cm-1) of LaF3 matrix. The optimum doping concentration for LaF3: Eu3+ nanoparticles was determined to be 20mol.%.  相似文献   

18.
Novel red-emitting phosphors Sr2MgSi2O7:Eu3+ were prepared by gel-combustion method assisted by microwave. The phase struc-ture and luminescent properties of as-synthesized phosphors were investigated by XRD and fluorescence spectrophotometer, respectively. The results showed that the as-synthesized sample was Sr2MgSi2O7 with tetragonal crystal structure. The excitation spectrum of Sr2MgSi2O7:Eu3+ was composed of two major parts: one was the broad band between 200 and 350 nm, which belonged to the charge transfer of Eu3+-O2-; the other consisted of a series of sharp lines between 350 and 450 nm, ascribed to the f-f transition of Eu3+. The emission spec-trum consisted of two emission peaks at 593 and 616 nm, which was attributed to 5D0→7F1 and 5D0→7F2 of Eu3+, respectively. The concen-tration of Eu3+ (x) had great effect on the emission intensity of Sr2-xMgSi2O7:Eu3+x. When x varied in the range of 0.04-0.18, the intensity of emission peaks at 593 and 616 nm increased gradually with the concentration of Eu3+ increasing. It was interesting that no concentration quenching occurred. Moreover, the luminescent intensity could be greatly enhanced with incorporation of charge compensator Li+ ions.  相似文献   

19.
Undoped and Eu3 -doped Sr2CeO4 luminescent materials were prepared by sol-gel method. The structure and uncommon photoluminescence of Sr2CeO4Eu3 phosphors were investigated in detail by powder X-ray diffraction (XRD), Raman spectrum, and photoluminescence spectrum, respectively. The XRD results demonstrate that the as-prepared Sr2CeO4 phosphor is single phase and well crystallized. For Sr2CeO4Eu3 phosphor, its excitation spectrum consists of a broad intense band from host and Eu3 -O2-charge transfer and a number of small peaks from Eu3 ion. The broad emission band originated from Sr2CeO4 host and Eu3 emission lines in the blue, green, and red regions coexist. Not only the characteristic transition lines from the lowest excited 5D0 level of Eu3 but also those from higher energy levels 5DJ (J=1,2)of Eu3 ions are observed. These unusual luminescence properties result from the low vibration energy of Sr2CeO4 host-lattice and different energy transfer process from host to activator.  相似文献   

20.
Novel soft materials,Eu(III)-containing complex dissolved in [C8mim][X](X=Cl-,PF6-and Tf2N-) ionic liquids,were synthesized.FT-IR and elementary analysis of complex proved that the molecular formula is [C8mim][Eu(TTA)4].The complex and ionic liquids had highthermal stability according to TGA.The photoluminescence spectra showed that the [C8mim][Eu(TTA)4] exhibited typical red emission deriving from 5D0-7F2 transition.After dissolving the complex in [C8mim][X](X=Cl-,PF6-and Tf2N-) ionic liquids,the luminescence intensitydecreased in the following order:[C8mim][Tf2N]≈[C8mim][PF6 ]>[C8mim][Cl].This was because Tf2N-and PF6-anions had larger molecularvolume and weaker coordination ability than Cl-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号