首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Despite considerable recent progress in understanding intergeneric relationships, a comprehensive analysis of Podocarpaceae at the species level using molecular data, biogeography, anatomy, and morphology has not been previously attempted. Here we present sequence analyses of rbcL, nrITS1 and NEEDLY intron 2 for two‐thirds (183 accessions of 145 taxa) of all Podocarpaceae species representing all genera except Parasitaxus. These analyses include many more species and accessions than previous studies and result in a more resolved phylogeny. The comprehensive anatomical and morphological study ensures that the identification of taxa is correct and also provides clade support. Bayesian and parsimony analyses were used to resolve 20 well‐supported monophyletic groups including 11 groups of the formerly poorly resolved subgenera Podocarpus and Foliolatus. The well‐resolved topology is supported by anatomical and morphological features and is highly congruent with geographical distribution. © The Willi Hennig Society 2011.  相似文献   

2.
An extended molecular phylogenetic analysis of Uvaria (Annonaceae) is presented, using maximum parsimony, maximum likelihood and Bayesian methods, based on sequences of four plastid DNA regions (matK, psbA‐trnH spacer, rbcL and trnL‐F). The additional taxa include the monotypic West African genus Balonga, the monotypic South‐East Asian genus Dasoclema and seven Australian representatives of the genus Melodorum. The results indicate that all of these taxa are nested within a well‐supported clade otherwise consisting of Uvaria species, indicating that their taxonomic treatment needs to be reassessed. The distinguishing morphological characteristics of the taxa are re‐evaluated and interpreted as specialized adaptations of the basic Uvaria structure. The genus Uvaria is accordingly extended following the transfer of these species, necessitating six new nomenclatural combinations and two replacement names. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 163 , 33–43.  相似文献   

3.

Background and Aims

The amount of data collected previously for Velloziaceae neither clarified relationships within the family nor helped determine an appropriate classification, which has led to huge discordance among treatment by different authors. To achieve an acceptable phylogenetic result and understand the evolution and roles of characters in supporting groups, a total evidence analysis was developed which included approx. 20 % of the species and all recognized genera and sections of Velloziaceae, plus outgroups representatives of related families within Pandanales.

Methods

Analyses were undertaken with 48 species of Velloziaceae, representing all ten genera, with DNA sequences from the atpB-rbcL spacer, trnL-trnF spacer, trnL intron, trnH-psbA spacer, ITS ribosomal DNA spacers and morphology.

Key Results

Four groups consistently emerge from the analyses. Persistent leaves, two phloem strands, stem cortex divided in three regions and violet tepals support Acanthochlamys as sister to Velloziaceae s.s., which are supported mainly by leaves with marginal bundles, transfusion tracheids and inflorescence without axis. Within Velloziaceae s.s., an African Xerophyta + Talbotia clade is uniquely supported by basal loculicidal capsules; an American clade, Barbacenia s.l. + Barbaceniopsis + Nanuza + Vellozia, is supported by only homoplastic characters. Barbacenia s.l. (= Aylthonia + Barbacenia + Burlemarxia + Pleurostima) is supported by a double sheath in leaf vascular bundles and a corona; Barbaceniopsis + Nanuza + Vellozia is not supported by an unambiguous character, but Barbaceniopsis is supported by five characters, including diclinous flowers, Nanuza + Vellozia is supported mainly by horizontal stigma lobes and stem inner cortex cells with secondary walls, and Vellozia alone is supported mainly by pollen in tetrads.

Conclusions

The results imply recognition of five genera (Acanthochlamys (Xerophyta (Barbacenia (Barbaceniopsis, Vellozia)))), solving the long-standing controversies among recent classifications of the family. They also suggest a Gondwanan origin for Velloziaceae, with a vicariant pattern of distribution.  相似文献   

4.
Molecular phylogenetic analyses of representative Cutleria species using mitochondrial cox3, chloroplast psaA, psbA and rbcL gene sequences showed that C. cylindrica Okamura was not included in the clade composed of other Cutleria species including the generitype C. multifida (Turner) Greville and the related taxon Zanardinia typus (Nardo) P.C. Silva. Instead, C. cylindrica was sister to the clade composed of the two genera excluding C. cylindrica. Cutleria spp. have heteromophic life histories and their gametophytes are rather diverse in gross morphology, from compressed or cylindrical‐branched to fan‐shaped, whereas the sporophytes are rather similar. In contrast, the monotypic species Z. typus has an isomorphic life history and resembles fan‐shaped Cutleria in morphology. Morphological comparisons of these taxa revealed that C. cylindrica is morphologically distinct from other Cutleria spp. and Z. typus in having cylindrical gametophytes with multiseriate trichothallic filaments instead of uniseriate filaments (hairs) characteristic of Cutleriales (or Cutleriaceae, Tilopteridales), and in lacking rhizoidal filaments in the crustose sporophytes. Therefore, based on the molecular and morphological data, the establishment of a new genus Mutimo to accommodate C. cylindrica, and the new combination of M. cylindricus, is proposed.  相似文献   

5.
6.
The genus Apalis is a member of the African forest warblers clade of the Cisticolidae. In view of its morphological diversity, it was suggested that this genus needs a taxonomic revaluation. For this, we sequenced a nuclear intron (myoglobin intron 2) and two mitochondrial protein‐coding genes (ND2 and ND3). The 2016 bp of sequence data obtained were aligned and subjected to parsimony, maximum likelihood and Bayesian inference. All three genes strongly reject the monophyly of Apalis but support the placing of all apalises within a broader clade of forest cisticolids which also includes Urolais. Within this forest clade, a subclade is defined which includes the genera Urolais, Schistolais and a well‐supported clade comprising three afromontane species, the Black‐collared Apalis Apalis pulchra, the Ruwenzori Apalis Apalis ruwenzorii and the African Tailorbird Artisornis. This subclade is sister to other members of Apalis, including the type species of the genus the Bar‐throated Apalis Apalis thoracica. A new generic name, Oreolais, is suggested for the Black‐collared and Ruwenzori Apalises.  相似文献   

7.
Impatiens L. is one of the largest angiosperm genera, containing over 1000 species, and is notorious for its taxonomic difficulty. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the genus to date based on a total evidence approach. Forty‐six morphological characters, mainly obtained from our own investigations, are combined with sequence data from three genetic regions, including nuclear ribosomal ITS and plastid atpB‐rbcL and trnL‐F. We include 150 Impatiens species representing all clades recovered by previous phylogenetic analyses as well as three outgroups. Maximum‐parsimony and Bayesian inference methods were used to infer phylogenetic relationships. Our analyses concur with previous studies, but in most cases provide stronger support. Impatiens splits into two major clades. For the first time, we report that species with three‐colpate pollen and four carpels form a monophyletic group (clade I). Within clade II, seven well‐supported subclades are recognized. Within this phylogenetic framework, character evolution is reconstructed, and diagnostic morphological characters for different clades and subclades are identified and discussed. Based on both morphological and molecular evidence, a new classification outline is presented, in which Impatiens is divided into two subgenera, subgen. Clavicarpa and subgen. Impatiens; the latter is further subdivided into seven sections.  相似文献   

8.
de Wet , J. M. J. (Div. Botany, Pretoria, So. Africa.) Chromosome numbers and some morphological attributes of various South African Grasses. Amer. Jour. Bot. 47(1): 44—49. Illus. 1960.– Chromosome numbers are reported for 68 species and varieties of grasses belonging to 40 genera. These include first reports for the genera Megastachya, Lintonia, Plagiochloa, Ctenium, Oropetium and Beckeropsis. Cytological data were correlated with observations from leaf and embryo anatomy. A common ancestor is postulated for the tribes Oryzeae, Ehrharteae and Centotheceae. The genera Lasiochloa, Plagiochloa and Urochlaena appear to belong neither with the tribe Festuceae nor with the Eragrosteae but probably are closer related to the Danthonieae. Lintonia. Entoplocamia, Tetrachne and Fingerhuthia are characterized by the chloridoid-eragrostoid type of cytology and leaf anatomy but the bambusoid type of embryo anatomy. For these reasons they appear to represent relics of the original Eragostoid and Chloridoid stock. The South African representatives of the genus Crinipes differ from the tropical species in respect to leaf anatomy. The tropical species are typically of the arundinoid type, whereas the South African species appear to be related to the Danthonieae.  相似文献   

9.
The leaf, stem, root, tuber and dropper anatomy of the orchid tribe Diseae (including the subtribes Satyriinae, Disinae, Brownlecinac, Huttonaeinae and Coryciinae) is reviewed. The study is largely based on investigations of 123 species, and data from several previous publications have also been incorporated. Two characters were identified as being taxonomically valuable: (1) the presence of sclerenchyma caps associated with leaf vascular bundles, and (2) the degree of dissection of the siphonostele of the tuber (‘polystelic’ or ‘monostelic’). The phylogenetic analysis shows that anatomical characters do not change the basic structure of a cladogram that is based on morphological characters. The taxa of Diseae are discussed on the basis of anatomical data. Subtribes Satyriinae (excluding the anatomically unusual genus Pachites), Brownleeinae, Huttonaeinae, and Coryciinae are uniform in. critical anatomical characters. However, subtribe Disinae is rather diverse in vegetative anatomy. Disa sect. Micranthae differs from the rest of the genus in its leaf anatomy. The occurrence of foliar sclerenchyma bundle caps and ‘polystelic’ tubers supports the incorporation of Herschelianthe in Disa sect. Stenocarpa.  相似文献   

10.
The anatomy and morphology of leaves in Carex have the potential to be taxonomically useful. However, studies on the variability of leaf characteristics in the genus are sparse. Researchers therefore risk using leaf anatomical characters without the knowledge of whether they are consistent in a species. We examined 22 qualitative and seven quantitative leaf anatomy characters from transverse leaf sections to test their consistency across 11 Carex spp. The characters were clearly described and primarily microscopic. Some characters were found to exhibit high levels of intraspecific variation, whereas other characters exhibited high levels of consistency in a species, including the shape of the leaf section, the density of papillae and the size of epidermal cells. Caution must be applied when choosing leaf anatomy to delimit taxa because of the intraspecific variability found in some characters, but sufficient numbers of invariant characters exist to provide useful taxonomic separation. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 371–384.  相似文献   

11.
The genus Pinus has wide geographical range and includes species that are the most economically valued among forest trees worldwide. Pine needle length varies greatly among species, but the effects of needle length on anatomy, function, and coordination and trade‐offs among traits are poorly understood. We examined variation in leaf morphological, anatomical, mechanical, chemical, and physiological characteristics among five southern pine species: Pinus echinata, Pinus elliottii, Pinus palustris, Pinus taeda, and Pinus virginiana. We found that increasing needle length contributed to a trade‐off between the relative fractions of support versus photosynthetic tissue (mesophyll) across species. From the shortest (7 cm) to the longest (36 cm) needles, mechanical tissue fraction increased by 50%, whereas needle dry density decreased by 21%, revealing multiple adjustments to a greater need for mechanical support in longer needles. We also found a fourfold increase in leaf hydraulic conductance over the range of needle length across species, associated with weaker upward trends in stomatal conductance and photosynthetic capacity. Our results suggest that the leaf size strongly influences their anatomical traits, which, in turn, are reflected in leaf mechanical support and physiological capacity.  相似文献   

12.
Two new species of the red algal genus Predaea are described from Australia. The first, Predaea aurora Kraft et G.W. Saunders, sp. nov., is unusual in its cool‐temperate distribution and in a number of anatomical attributes, most notably the rhizoid‐like habit of the nutritive filaments associated with the auxiliary cells. The second species, Predaea tumescens Kraft et G.W. Saunders, sp. nov., inhabits a coral reef habitat more typical of the genus but nonetheless differs in a number of anatomical details from other reported species. Nuclear small subunit rDNA sequences have confirmed the affinity of P. aurora to other species currently included in this genus. Molecular analyses further indicate that Predaea belongs in the Nemastomataceae and that the Nemastomataceae and Schizymeniaceae are sister taxa in an independent clade of “lineage 4” florideophyte algae. As such, a proposal is made to resurrect the Nemastomatales Kylin emend. G.W. Saunders et Kraft to accommodate these two families. Within the Schizymeniaceae, the Australian‐endemic Platoma australicum and Platoma foliosum were only distantly related to the other included Platoma, Schizymenia, and Titanophora spp. We therefore propose Wetherbeella G.W. Saunders et Kraft, gen. nov., to accommodate these two species. An additional outcome of our molecular analyses is that the genus Tsengia is not a member of the Nemastomataceae (where it is currently placed) but rather forms an independent lineage in the Halymeniales that we now designate as the Tsengiaceae G.W. Saunders et Kraft, fam. nov. Finally, the South African Nemastoma lanceolatum J. Agardh is transferred to Tsengia.  相似文献   

13.
14.
The rapid conversion of Southeast Asian lowland rainforests into monocultures calls for the development of rapid methods for species identification to support ecological research and sustainable land‐use management. Here, we investigated the utilization of DNA barcodes for identifying flowering plants from Sumatra, Indonesia. A total of 1,207 matK barcodes (441 species) and 2,376 rbcL barcodes (750 species) were successfully generated. The barcode effectiveness is assessed using four approaches: (a) comparison between morphological and molecular identification results, (b) best‐close match analysis with TaxonDNA, (c) barcoding gap analysis, and (d) formation of monophyletic groups. Results show that rbcL has a much higher level of sequence recoverability than matK (95% and 66%). The comparison between morphological and molecular identifications revealed that matK and rbcL worked best assigning a plant specimen to the genus level. Estimates of identification success using best‐close match analysis showed that >70% of the investigated species were correctly identified when using single barcode. The use of two‐loci barcodes was able to increase the identification success up to 80%. The barcoding gap analysis revealed that neither matK nor rbcL succeeded to create a clear gap between the intraspecific and interspecific divergences. However, these two barcodes were able to discriminate at least 70% of the species from each other. Fifteen genera and twenty‐one species were found to be nonmonophyletic with both markers. The two‐loci barcodes were sufficient to reconstruct evolutionary relationships among the plant taxa in the study area that are congruent with the broadly accepted APG III phylogeny.  相似文献   

15.
The biogeography of Gunnera L.: vicariance and dispersal   总被引:2,自引:1,他引:1  
Aim The genus Gunnera is distributed in South America, Africa and the Australasian region, a few species reaching Hawaii and southern Mexico in the North. A cladogram was used to (1) discuss the biogeography of Gunnera and (2) subsequently compare this biogeographical pattern with the geological history of continents and the patterns reported for other Southern Hemisphere organisms. Location Africa, northern South America, southern South America, Tasmania, New Zealand, New Guinea/Malaya, Hawaii, North America, Antarctica. Methods A phylogenetic analysis of twenty‐six species of Gunnera combining morphological characters and new as well as published sequences of the ITS region, rbcL and the rps16 intron, was used to interpret the biogeographical patterns in Gunnera. Vicariance was applied in the first place and dispersal was only assumed as a second best explanation. Results The Uruguayan/Brazilian Gunnera herteri Osten (subgenus Ostenigunnera Mattfeld) is sister to the rest of the genus, followed sequentially upwards by the African G. perpensa L. (subgenus Gunnera), in turn sister to all other, American and Australasian, species. These are divided into two clades, one containing American/Hawaiian species, the other containing all Australasian species. Within the Australasian clade, G. macrophylla Blume (subgenus Pseudogunnera Schindler), occurring in New Guinea and Malaya, is sister to a clade including the species from New Zealand and Tasmania (subgenus Milligania Schindler). The southern South American subgenus Misandra Schindler is sister to a clade containing the remaining American, as well as the Hawaiian species (subgenus Panke Schindler). Within subgenus Panke, G. mexicana Brandegee, the only North American species in the genus, is sister to a clade wherein the Hawaiian species are basal to all south and central American taxa. Main conclusions According to the cladogram, South America appears in two places, suggesting an historical explanation for northern South America to be separate from southern South America. Following a well‐known biogeographical pattern of vicariance, Africa is the sister area to the combined southern South America/Australasian clade. Within the Australasian clade, New Zealand is more closely related to New Guinea/Malaya than to southern South America, a pattern found in other plant cladograms, contradictory to some of the patterns supported by animal clades and by the geological hypothesis, respectively. The position of the Tasmanian G. cordifolia, nested within the New Zealand clade indicates dispersal of this species to Tasmania. The position of G. mexicana, the only North American species, as sister to the remaining species of subgenus Panke together with the subsequent sister relation between Hawaii and southern South America, may reflect a North American origin of Panke and a recolonization of South America from the north. This is in agreement with the early North American fossil record of Gunnera and the apparent young age of the South American clade.  相似文献   

16.
In this study, morphological and anatomical features of Ornithogalum nutans and O. boucheanum, two relative and morphologically similar species growing in European Turkey, were investigated. These species showed some important anatomical differences with regard to leaf anatomy while they have identical features in stem. The stem anatomy of these two species displays the common properties of monocotyledons. The mesophyll is unifacial and contains monotypic chlorenchyma cells in the leaf of O. nutans. It has no lacunae. The mesophyll in O. boucheanum is equifacial and it has lacunae. This anatomical distinction may be useful for the identification of these similar-looking species.  相似文献   

17.
It has been assumed that species of the large African genus Protea have strong self‐incompatibility systems. However, this assumption was based largely on studies conducted on a clade of bird‐pollinated species that occur in the shrubby fynbos vegetation of the Cape region of southern Africa. To test whether self‐incompatibility occurs in a grassland/savanna Protea clade, which is largely insect‐pollinated, we performed controlled pollination experiments on four species, P. caffra, P. dracomontana, P. simplex and P. welwitschii. Although pollen–ovule ratios of all four species fall within the range for outcrossers, all four species are self‐compatible and capable of autonomous seed production. Using fluorescence microscopy, we found that self‐pollen tubes had the same probability of reaching ovules as cross‐pollen tubes. In the small tree P. caffra, selfed progeny had rates of germination and survivorship that were identical to those of crossed progeny. The grassland Protea spp. studied are likely to have mixed mating systems on account of being both visited by insects and capable of autonomous selfing. If one assumes previous reports of self‐incompatibility in Protea to be reliable, there have been at least five losses of self‐incompatibility and two gains of autonomous selfing in this genus. However, earlier studies in the genus were often methodologically flawed and a thorough re‐analysis of breeding systems in Protea is required. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169 , 433–446.  相似文献   

18.
We explored potential of morphological and anatomical leaf traits for predicting ecophysiological key functions in subtropical trees. We asked whether the ecophysiological parameters stomatal conductance and xylem cavitation vulnerability could be predicted from microscopy leaf traits. We investigated 21 deciduous and 19 evergreen subtropical tree species, using individuals of the same age and from the same environment in the Biodiversity‐Ecosystem Functioning experiment at Jiangxi (BEF‐China). Information‐theoretic linear model selection was used to identify the best combination of morphological and anatomical predictors for ecophysiological functions. Leaf anatomy and morphology strongly depended on leaf habit. Evergreen species tended to have thicker leaves, thicker spongy and palisade mesophyll, more palisade mesophyll layers and a thicker subepidermis. Over 50% of all evergreen species had leaves with multi‐layered palisade parenchyma, while only one deciduous species (Koelreuteria bipinnata) had this. Interactions with leaf habit were also included in best multi‐predictor models for stomatal conductance (gs) and xylem cavitation vulnerability. In addition, maximum gs was positively related to log ratio of palisade to spongy mesophyll thickness. Vapour pressure deficit (vpd) for maximum gs increased with the log ratio of palisade to spongy mesophyll thickness in species having leaves with papillae. In contrast, maximum specific hydraulic conductivity and xylem pressure at which 50% loss of maximum specific xylem hydraulic conductivity occurred (Ψ50) were best predicted by leaf habit and density of spongy parenchyma. Evergreen species had lower Ψ50 values and lower maximum xylem hydraulic conductivities. As hydraulic leaf and wood characteristics were reflected in structural leaf traits, there is high potential for identifying further linkages between morphological and anatomical leaf traits and ecophysiological responses.  相似文献   

19.
20.
Alstroemerieae is an exclusively Central and South American tribe belonging to Alstroemeriaceae, which comprises two large genera, Alstroemeria and Bomarea. Alstroemeria has two areas of distribution, mediterranean Chile and central southeastern Brazil. Most Bomarea species grow in forests and hedges in moist areas, however, some species are adapted to dry Andean valleys and high altitudes. Previous leaf anatomical data were obtained from a limited group of species. To assess the value of the anatomical characters for the systematics and their importance as adaptations to different environments, we compared representative species from different geographical areas and habitats. Data regarding leaf anatomy and micromorphology were obtained from light microscopy and scanning electron microscopy and were combined with macromorphology for 27 Alstroemerieae species. In accordance with earlier studies, our results show variation in relation to several leaf morpho‐anatomical characters. Based on these we define seven types. We furthermore analyzed the morpho‐anatomical characters in a phylogenetic context. Morpho‐anatomical characters are highly homoplastic within the family. Leaf anatomy may support monophyly of Baker's informal grouping of Alstroemeria Brazilian species with rigid leaves, however, a more thorough study of Brazilian Alstroemeria species are needed to confirm this.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号