首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
各种网格上统一的数值离散方法   总被引:1,自引:0,他引:1  
蔡庆东 《力学学报》2004,36(4):393-400
提出一种在任意网格上计算数值微分的方法,这种方法利用各种不同网格所具有的共同性质, 基于Taylor展开和加权最小二乘法,得到了各种网格下都可以使用的数值微分格式. 有了这一技术, 可以极大地丰富已经发展起来的各种数值方法,原来只能用在结构网格上的格式,可以直接推广到 其他各种网格上,从而可以用于各种复杂区域内微分方程的数值求解. 初步的应用表明这种技术是 简单而有效的.  相似文献   

2.
A finite difference method at arbitrary meshes for the bending of plates with variable thickness is presented in this paper.The method is completely general with respect to various boundary conditions,load cases and shapes of plates.This difference scheme is simple and the numerical results agree well with those obtained by other methods.  相似文献   

3.
Practical calculations and numerical experiments in this paper have shown that in elements relating to a common node it is acceptable and reasonable for derivaties of temperature with respect to time on nodes of those elements to be presented with one on common node, if linear interpolation shape function is taken. The relation between the derivative of temperature to time on a certain node and the temperature on other nodes around that node may therefore be established after discretization of the differential equation is made in space by the finite element method. Then an explicit scheme for calculating the temperature fields may be constructed. The obtained algebraic equations. being simple and the procedure being straight will be its two tangible advantages and its calculating will, therefore, be fast. The stability analysis by the maximum principle, as in the example quoted, proves that the stability condition is similar to that in implicit algorithms.  相似文献   

4.
弹性力学中的一种非协调数值流形方法   总被引:1,自引:0,他引:1  
魏高峰  冯伟 《力学学报》2006,38(1):79-88
通过引入数学和物理双重网格,将插值域与 积分域分别定义在不同的覆盖上,即在数学网格上进行插值函数的构造,物理网格上完成 系统能量泛函积分运算,最后通过覆盖权函数将二者联结在一起. 它的优点是单元网格划 分随意,不受复杂边界形状和二相材料界面的限制,单元可以是任意形状,是较之于有限 元方法更一般的数值模拟方法. 在4节点四边形数值流形方法中,由于单元总体位移函数 包含的完全多项式不完全,使得计算精度不够精确,为此,在单元总体位移函数上附 加非协调位移基本项,使之趋于完全,提出了弹性力学问题的一种改进的数值流形 方法------非协调数值流形方法. 通过内部自由度静力凝聚处理,导出了消除内参后的单元应变矩阵 和单元刚度矩阵,使得在不增加广义节点自由度的前提下,大大提高了数值流形方法的计 算精度和计算效率. 同时对非协调项进行了显式处理,可以对工程实践起到更切实的帮助. 数值试验表明,它们能够保证收敛,有较高的精度,对畸变不敏感,从而证明了该方法的 可行性.  相似文献   

5.
Within the mixed FEM, the mini‐element that uses a bubble shape function for the solution of the shallow water wave equations on triangle meshes is simplified to a sparse element formulation. The new formulation has linear shape functions for water levels and constant shape functions for velocities inside each element. The suppression of decoupled spurious solutions is excellent with the new scheme. The linear dispersion relation of the new element has similar advantages as that of the wave equation scheme (generalised wave continuity scheme) proposed by Lynch and Gray. It is shown that the relation is monotonic over all wave numbers. In this paper, the time stepping scheme is included in the dispersion analysis. In case of a combined space–time staggering, the dispersion relation can be improved for the shortest waves. The sparse element is applied in the flow model Bubble that conserves mass exactly. At the same time, because of the limited number of degrees of freedom, the computational efficiency is high. The scheme is not restricted to orthogonal triangular meshes. Three test cases demonstrate the very good accuracy of the proposed scheme. The examples are the classical quarter annulus test case for the linearised shallow water equations, the hydraulic jump and the tide in the Elbe river mouth. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Unstructured meshes allow easily representing complex geometries and to refine in regions of interest without adding control volumes in unnecessary regions. However, numerical schemes used on unstructured grids have to be properly defined in order to minimise numerical errors. An assessment of a low Mach algorithm for laminar and turbulent flows on unstructured meshes using collocated and staggered formulations is presented. For staggered formulations using cell‐centred velocity reconstructions, the standard first‐order method is shown to be inaccurate in low Mach flows on unstructured grids. A recently proposed least squares procedure for incompressible flows is extended to the low Mach regime and shown to significantly improve the behaviour of the algorithm. Regarding collocated discretisations, the odd–even pressure decoupling is handled through a kinetic energy conserving flux interpolation scheme. This approach is shown to efficiently handle variable‐density flows. Besides, different face interpolations schemes for unstructured meshes are analysed. A kinetic energy‐preserving scheme is applied to the momentum equations, namely, the symmetry‐preserving scheme. Furthermore, a new approach to define the far‐neighbouring nodes of the quadratic upstream interpolation for convective kinematics scheme is presented and analysed. The method is suitable for both structured and unstructured grids, either uniform or not. The proposed algorithm and the spatial schemes are assessed against a function reconstruction, a differentially heated cavity and a turbulent self‐igniting diffusion flame. It is shown that the proposed algorithm accurately represents unsteady variable‐density flows. Furthermore, the quadratic upstream interpolation for convective kinematics scheme shows close to second‐order behaviour on unstructured meshes, and the symmetry‐preserving is reliably used in all computations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A new mixed‐interpolation finite element method is presented for the two‐dimensional numerical simulation of incompressible magnetohydrodynamic (MHD) flows which involve convective heat transfer. The proposed method applies the nodal shape functions, which are locally defined in nine‐node elements, for the discretization of the Navier–Stokes and energy equations, and the vector shape functions, which are locally defined in four‐node elements, for the discretization of the electromagnetic field equations. The use of the vector shape functions allows the solenoidal condition on the magnetic field to be automatically satisfied in each four‐node element. In addition, efficient approximation procedures for the calculation of the integrals in the discretized equations are adopted to achieve high‐speed computation. With the use of the proposed numerical scheme, MHD channel flow and MHD natural convection under a constant applied magnetic field are simulated at different Hartmann numbers. The accuracy and robustness of the method are verified through these numerical tests in which both undistorted and distorted meshes are employed for comparison of numerical solutions. Furthermore, it is shown that the calculation speed for the proposed scheme is much higher compared with that for a conventional numerical integration scheme under the condition of almost the same memory consumption. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
卷积型伽辽金法求解任意边界梁的动力学问题   总被引:1,自引:0,他引:1  
通过选取时间上采用级数形式,空间上采用梁振型函数的试函数,推导出求解任意边界条件 梁的卷积型伽辽金法. 计算了两端固定梁的动力问题,算例表明,方法计算精度 高,计算工作量少,是计算结构动力学问题的一种有效方法.  相似文献   

9.
A Chebyshev finite spectral method on non-uniform meshes is proposed. An equidistribution scheme for two types of extended moving grids is used to generate grids. One type is designed to provide better resolution for the wave surface, and the other type is for highly variable gradients. The method has high-order accuracy because of the use of the Chebyshev polynomial as the basis function. The polynomial is used to interpolate the values between the two non-uniform meshes from a previous time step to the current time step. To attain high accuracy in the time discretization, the fourth-order Adams-Bashforth-Moulton predictor and corrector scheme is used. To avoid numerical oscillations caused by the dispersion term in the Korteweg-de Vries (KdV) equation, a numerical technique on non-uniform meshes is introduced. The proposed numerical scheme is validated by the applications to the Burgers equation (nonlinear convectiondiffusion problems) and the KdV equation (single solitary and 2-solitary wave problems), where analytical solutions are available for comparisons. Numerical results agree very well with the corresponding analytical solutions in all cases.  相似文献   

10.
以RBF作为DQ方法的基函数,将迎风机制引入DQ-RBF中,建立了二维不可压缩黏性N-S方程数值求解模型,采用Levenberg-Marquardt算法求解非线性方程组.求解时分析了形状参数对求解精度的影响,改进了边界速度的处理方法.对平板Couette流及有限宽台阶绕流流动问题进行了数值求解.比较了本文方法和FLUE...  相似文献   

11.
In this paper, we construct a high-order moving mesh method based on total variation diminishing Runge-Kutta and weighted essential nonoscillatory reconstruction for compressible fluid system. Beginning with the integral form of fluid system, we get the semidiscrete system with an arbitrary mesh velocity. We use weighted essential nonoscillatory reconstruction to get the space accuracy on moving meshes, and the time accuracy is obtained by modified Runge-Kutta method; the mesh velocity is determined by moving mesh method. One- and two-dimensional numerical examples are presented to demonstrate the efficient and accurate performance of the scheme.  相似文献   

12.
This paper presents a numerical method for solving compressible turbulent flows using a k - l turbulence model on unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multi-stage Runge-Kutta time stepping scheme, while the turbulence equations are advanced using a multi-stage point-implicit scheme. The positivity of turbulence variables is achieved using a simple change of dependent variables. The developed method is used to compute a variety of turbulent flow problems. The results obtained are in good agreement with theoretical and experimental data, indicating that the present method provides a viable and robust algorithm for computing turbulent flows on unstructured meshes.  相似文献   

13.
A hybrid numerical scheme combining the Laplace transform and control-volume methods is presented to solve nonlinear two-dimensional phase-change problems with the irregular geometry. The Laplace transform method is applied to deal with the time domain, and then the control-volume method is used to discretize the transformed system in the space domain. Nonlinear terms induced by the temperature-dependent thermal properties are linearized by using the Taylor series approximation. Control-volume meshes in the solid and liquid regions during simulations are generated by using the discrete transfinite mapping method. The location of the phase-change interface and the isothermal distributions are determined. Comparison of these results with previous results shows that the present numerical scheme has good accuracy for two-dimensional phase-change problems. Received on 17 October 1996  相似文献   

14.
基于非结构化同位网格的SIMPLE算法   总被引:4,自引:1,他引:4  
通过基于非结构化网格的有限体积法对二维稳态Navier—Stokes方程进行了数值求解。其中对流项采用延迟修正的二阶格式进行离散;扩散项的离散采用二阶中心差分格式;对于压力-速度耦合利用SIMPLE算法进行处理;计算节点的布置采用同位网格技术,界面流速通过动量插值确定。本文对方腔驱动流、倾斜腔驱动流和圆柱外部绕流问题进行了计算,讨论了非结构化同位网格有限体积法在实现SIMPLE算法时,迭代次数与欠松弛系数的关系、不同网格情况的收敛性、同结构化网格的对比以及流场尾迹结构。通过和以往结果比较可知,本文的方法是准确和可信的。  相似文献   

15.
To solve the coupled vibration of a gravity dam-reservoir system with variable water depth by using a hybrid element method, the fluid region with variable water depth needs to be discretized by FE meshes. However, such a method asks for a great computational cost owing to the excessive unknowns, especially when the fluid region with variable water depth is relatively large. To overcome the shortcoming, a refined boundary element method is proposed to analyze the fluid field, in which only the discretization for the boundary of the variable depth region is required. But as a basis of this approach, it is necessary to construct a new Green's function corresponding to an infinite strip region. The problem is solved as the first step in this paper by employing Fridman's operator function theory, and then a mixed FE-BE formulation for analyzing the free vibration of the gravity damreservoir system is derived by means of the coupling conditions on the dam-reservoir interface. Finally, a numerical example is provided to illustrate a great improvement of the method developed herein over the hybrid element method. The project supported by the National Key Research Plan of China.  相似文献   

16.
We present a robust numerical method for solving incompressible, immiscible two-phase flows. The method extends both a monolithic phase conservative level set method with embedded redistancing and a semi-implicit high-order projection scheme for variable-density flows. The level set method can be initialized conveniently via a simple phase indicator field instead of a signed distance function (SDF). To process the indicator field into a SDF, we propose a new partial differential equation-based redistancing method. We also improve the monolithic level set scheme to provide more accuracy and robustness in full two-phase flow simulations. Specifically, we perform an extra step to ensure convergence to the signed distance level set function and simplify other aspects of the original scheme. Lastly, we introduce consistent artificial viscosity to stabilize the momentum equations in the context of the projection scheme. This stabilization is algebraic, has no tunable parameters and is suitable for unstructured meshes and arbitrary refinement levels. The overall methodology includes few numerical tuning parameters; however, for the wide range of problems that we solve, we identify only one parameter that strongly affects performance of the computational model and provide a value that provides accurate results across all the benchmarks presented. This methodology results in a robust, accurate, and efficient two-phase flow model, which is mass- and volume-conserving on unstructured meshes and has low user input requirements, making it attractive for real-world applications.  相似文献   

17.
In this paper, we present a regression hybrid method that calculates shape sensitivity coe?cients for multiscale crack propagation problems with performance measures that are non-differentiable in numerical implementation. These measures are crack propagation speed (or crack speed) defined at atomistic level obtained by solving coupled atomistic/continuum structures using the bridging scale method (BSM). The major contributions of this paper are: first, by analyzing the characteristics of the performance measures of crack speed in design space, this paper verifies for the first time that these measures are theoretically continuous and differentiable with respect to design variables, and as a result, the sensitivity coe?cients exist in theory; second, to overcome the non-differentiability of the performance measures in numerical computation due to the finite size of integration time step, this paper proposes a regression hybrid method that calculates the shape sensitivity coe?cients of crack speed through polynomial regression analysis based on the sensitivity of atomic responses, which is calculated through analytical shape design sensitivity analysis (DSA). And finally, the proposed method supports for 3D crack propagation problems with periodic boundary condition in one direction. A nano-beam example is used to demonstrate numerically the feasibility, accuracy, and e?ciency of the proposed method.  相似文献   

18.
提出多结点六面体单元的结点形函数构建方法,解决了数字化分析时两个多尺度有限元网格在接触界面由于单元结点不匹配而导致的结点属性不能连续传递问题.首先将全局坐标下的六面体单元及其表面上多结点通过等参逆变换转成局部坐标下的规则六面体单元及其表面上多结点;在规则单元中,以每个结点为基点,分别沿三个正交的局部坐标方向在单元内寻找...  相似文献   

19.
二阶流形元法与结构变形分析   总被引:15,自引:1,他引:15  
张国新  彭静 《力学学报》2002,34(2):261-269
在原有一阶流形元法的基础上开发了二阶流形元法数值仿真模型和相应的计算程序,并给出了计算实例。结果表明,二阶流形元法可以以较高的精度分析一般结构的变形和接触应力问题,对大变形问题独有优势。并能很好地模拟不连续介质的破坏过程及块体破坏后的运动。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号