首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Chimera technique for moving grids is used to take into account nonhomogeneous unsteady inflow conditions in the simulation of aerodynamic flows. The method is applied to simulate the transport of a large‐scale vortex by a mean velocity field over a large distance, where it finally interacts with an airfoil. The Chimera approach allows one to resolve the vortex on a fine grid, whereas the unstructured background grid covering most of the computational domain can be much coarser. This method shows the same low numerical dissipation as a simulation on a globally fine grid. Several precursor tests are performed with a finite modified analytical Lamb–Oseen type vortex to study the influence of spatial and temporal resolution and the employed numerical scheme. Then, the interaction of an analytical vortex with a NACA0012 airfoil and with an ONERA‐A airfoil near stall is studied. Finally, a realistic vortex is generated by a ramping airfoil and is transported on a moving Chimera block and then interacts with a two‐element airfoil, which allows one to simulate a typical setup for a gust generator in aerodynamic facilities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
非结构/混合网格具有极强的几何灵活性,在复杂外形飞行器的气动力特性数值模拟中已得到广泛应用,但目前还难以准确地预测气动热环境。本文从非结构/混合网格热流计算的三个需求出发,选取了多维迎风方法,并与其他方法进行了对比研究。以二维圆柱高超声速绕流这一Benchmark典型问题为例,对比研究了多维迎风方法和几种广泛使用的无粘通量格式(Roe格式、Van Leer格式和AUSMDV格式)对混合网格热流计算精度的影响。结果表明,多维迎风方法在热流计算精度、鲁棒性以及收敛性方面表现良好。最后,将多维迎风方法应用于常规混合网格上的圆柱和钝双锥绕流问题,均得到了较好的热流计算结果,为非结构/混合网格热流计算在复杂高超飞行器中的应用奠定了基础。  相似文献   

3.
给出一种适用于SK型静态混合器流场数值模拟的两级分块结构化网格划分方案和分块圆弧区点的极坐标方程。与常用的非结构四面体网格划分对比,两种方法划分网格数量相近时,两级分块结构化网格达到的迭代精度高于非结构化网格一个等级,而非结构化网格收敛所用时间约为结构化网格收敛所用时间的1.25倍;运用控制体积容积变化值对两种方法划分网格进行质量评估,结构化网格划分方法接近99%网格质量指标在1.0~2.0范围内,而非结构化网格仅接近60%网格质量指标在1.0~2.0范围内。通过实验测量对两种方法划分网格数值模拟结果进行对比验证,结构化网格计算结果与实验值更为接近,表明其可行性和准确性均优于非结构四面体网格划分。  相似文献   

4.
Simulation of shallow flows over variable topographies is a challenging case for most available shock‐capturing schemes. This problem arises because the source terms and flux gradients are not balanced in the numerical computations. Treatments for this problem generally work well on structured grids, but they are usually too expensive, and most of them are not directly applicable to unstructured grids. In this paper we propose two efficient methods to treat the source terms without upwinding and to satisfy the compatibility condition on unstructured grids. In the first method, the calculation of the bed slope source term is performed by employing a compatible approximation of water depth at the cell interfaces. In the second one, different components of the bed slope term are considered separately and a compatible discretization of the components is proposed. The present treatments are applicable for most schemes including the Roe's method without changing the performance of the original scheme for smooth topographies. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
An estimate on the conservation error due to the non-conservative data interpolation scheme for overset grids is given in this paper. It is shown that the conservation error is a first-order term if second-order conservative schemes are employed for the Chimera grids and if discontinuities are located away from overlapped grid interfaces. Therefore in the limit of global grid refinement, valid numerical solutions should be obtained with a data interpolation scheme. In one demonstration case the conservation error in the original Chimera scheme was shown to affect flow even without discontinuities on coarse to medium grids. The conservative Chimera scheme was shown to give significantly better solutions than the original Chimera scheme on these grids with other factors being the same.  相似文献   

6.
发展了一种在非正交同位网格下以笛卡儿速度分量作为动量方程的独立变量、压力与速度耦合的S IM-PLER算法。该算法的特点是显式处理界面速度中的压力交叉导数项,得出压力与压力修正方程,使得压力及压力修正值与界面逆变速度直接耦合。通过对分汊通道内的流动问题进行验证计算,结果表明该算法可以有效而准确地模拟复杂区域内的流动与换热问题。  相似文献   

7.
An unstructured finite volume time domain method (UFVTDM) is proposed to simulate stress wave propagation. The original variables of displacement and stress are solved based on the dynamic equilibrium equations. An Euler explicit and unstructured finite volume method is used for time and spacial terms respectively. The displacements are stored on the cell vertex and a vertex based finite volume is formed with the integral surface and the stress is assumed as uniform in the cell. This is some similar with the stager grid method in computational fluid dynamics. Several cases are used to show the capability of the algorithm.  相似文献   

8.
Two‐layer incompressible flows are analysed using the ghost fluid method on unstructured grids. Discontinuities in dynamic pressure along interfaces are captured in one cell without oscillations. Because of data reconstructions based on gradients, the ghost fluid method can be adopted without additional storages for the ghost nodes at the expense of modification in gradient calculations due to the discontinuity. The code is validated through comparisons with experimental and other numerical results. Good agreements are achieved for internal waves generated by a body moving at transcritical speeds including a case where upstream solitary internal waves propagate. The developed code is applied to analyse internal waves generated by a NACA0012 section moving near interfaces. Variations of the lift acting on the body and configurations of the interfaces are compared for various distances between the wing and the interface. The effects of the interface are compared with the effects of a solid wall. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
高超声速气动热环境的数值计算对算法和网格的敏感度极高. 随着高超声速飞行器外形日益复杂, 生成高质量的结构网格时间成本呈指数增加, 难以满足工程应用的需求. 非结构/混合网格因具有很强的复杂外形适应能力, 为了缩短任务周期, 有必要在非结构/混合网格上开展高精度的气动热环境数值计算方法研究. 梯度重构方法是影响非结构/混合网格热流计算精度的重要因素之一. 本文通过引入多维梯度重构方法, 发展了基于常规的非结构/混合网格的高精度热流计算方法, 对典型的高超声速Benchmark算例(二维圆柱)进行了模拟, 并与气动力计算广泛采用的Green-Gauss类方法和最小二乘类方法进行了对比. 计算结果表明, 多维梯度重构方法能有效提高非结构/混合网格热流预测精度, 其鲁棒性和收敛性更好. 最后将多维梯度重构方法应用于常规混合网格的三维圆柱和三维双椭球绕流问题, 得到了与实验值吻合较好的热流计算结果, 展现了良好的应用前景.   相似文献   

10.
The benefits of unstructured grids in hydrodynamic models are well understood but in many cases lead to greater numerical diffusion compared with methods available on structured grids. The flexible nature of unstructured grids, however, allows for the orientation of the grid to align locally with the dominant flow direction and thus decrease numerical diffusion. We investigate the relationship between grid alignment and diffusive errors in the context of scalar transport in a triangular, unstructured, 3‐D hydrodynamic code. Analytical results are presented for the 2‐D anisotropic numerical diffusion tensor and verified against idealized simulations. Results from two physically realistic estuarine simulations, differing only in grid alignment, show significant changes in gradients of salinity. Changes in scalar gradients are reflective of reduced numerical diffusion interacting with the complex 3‐D structure of the transporting flow. We also describe a method for utilizing flow fields from an unaligned grid to generate a flow‐aligned grid with minimal supervision. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This paper proposes a hybrid vertex-centered finite volume/finite element method for solution of the two dimensional (2D) incompressible Navier-Stokes equations on unstructured grids.An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling.The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by joining the centroid of cells sharing the common vertex.For the temporal integration of the momentum equations,an implicit second-order scheme is utilized to enhance the computational stability and eliminate the time step limit due to the diffusion term.The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite element method (FEM).The momentum interpolation is used to damp out the spurious pressure wiggles.The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both velocity and pressure.The classic test cases,the lid-driven cavity flow,the skew cavity flow and the backward-facing step flow,show that numerical results are in good agreement with the published benchmark solutions.  相似文献   

12.
Due to the great geometrical flexibility, popularity for unstructured grid methods in fluid dynamics has been increasing in recent years. In parallel with this interest there is a need for bounded second or higher order convection schemes which can be implemented easily in the unstructured setting. In the present work a simple strategy for achieving convective boundedness in the context of a vertex‐centered unstructured finite volume algorithm is demonstrated. Testing is carried out on an inviscid oblique step problem using both structured and unstructured grid arrangements. Further testing for numerical diffusion is done using a distorted grid in a two dimensional channel. The proposed scheme is straightforward to implement and is found to perform well for the cases considered. The overall algorithm converges well and the limiter appears to introduce little extra numerical diffusion beyond that inherently present in the base scheme. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The purpose of this work is to introduce and validate a new staggered control volume method for the simulation of 2D/axisymmetric incompressible flows. The present study introduces a numerical procedure for solving the Navier–Stokes equations using the primitive variable formulation. The proposed method is an extension of the staggered grid methodology to unstructured triangular meshes for a control volume approach which features ease of handling of irregularly shaped domains. Two alternative elements are studied: transported scalars are stored either at the sides of an element or at its vertices, while the pressure is always stored at the centre of an element. Two interpolation functions were investigated for the integration of the momentum equations: a skewed mass-weighted upwind function and a flow-oriented exponential shape function. The momentum equations are solved over the covolume of a side or of a vertex and the pressure–velocity coupling makes use of a localized linear reconstruction of the discontinuous pressure field surrounding an element in order to obtain the pressure gradient terms. The pressure equation is obtained through a discretization of the continuity equation which uses the triangular element itself as the control volume. The method is applied to the simulation of the following test cases: backward-facing step flow, flow over a two-dimensional obstacle and flow in a pipe with sudden contraction of cross-sectional area. All numerical investigations are compared with experimental data from the literature. A grid convergence and error analysis study is also carried out for flow in a driven cavity. Results compared favourably with experimental data and so the new control volume scheme is deemed well suited for the prediction of incompressible flows in complex geometries. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
This paper describes the development of a parallel three‐dimensional unstructured non‐isothermal flow solver for the simulation of the injection molding process. The numerical model accounts for multiphase flow in which the melt and air regions are considered to be a continuous incompressible fluid with distinct physical properties. This aspect avoids the complex reconstruction of the interface. A collocated finite volume method is employed, which can switch between first‐ and second‐order accuracy in both space and time. The pressure implicit with splitting of operators algorithm is used to compute the transient flow variables and couple velocity and pressure. The temperature equation is solved using a transport equation with convection and diffusion terms. An upwind differencing scheme is used for the discretization of the convection term to enforce a bounded solution. In order to capture the sharp interface, a bounded compressive high‐resolution scheme is employed. Parallelization of the code is achieved using the PETSc framework and a single program multiple data message passing model. Predicted numerical solutions for several example problems are considered. The first case validates the solution algorithm for moderate Reynolds number flows using a structured mesh. The second case employs an unstructured hybrid mesh showing the capability of the solver to describe highly viscous flows closer to realistic injection molding conditions. The final case presents the non‐isothermal filling of a thick cavity using three mesh sizes and up to 80 processors to assess parallel performance. The proposed algorithm is shown to have good accuracy and scalability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
运用一种改进的非结构化四边形格子法,对含孔正交各向异性板条受面内冲击拉伸时弹性应力波的传播过程和孔边的动应力集中进行了研究.非结构化格子法采用与有限元类似的网格剖分方法,并基于围绕每个节点的积分平衡方程,并自然满足复杂边界的自由边界条件.计算中不需存储刚度矩阵,因而计算速度快、效率高、节省内存,在解决应力波传播问题中具有显著的优越性.通过对多种工况进行数值模拟,分析了材料的各向异性性质、纤维方向、孔径比、加载脉冲周期等参数对孔边动应力的影响,得到了一些规律性的结果.并与现有实验结果进行对比,验证了该方法的有效性.  相似文献   

16.
三维非结构网格DSMC方法的实现及其应用   总被引:1,自引:0,他引:1  
研究了三维非结构网格DSMC方法实现的过程。将Bird位置元方案中的子网格思想引入到非结构网格上来,只存储子网格的总体标识号,利用较少的计算网格提高了分子的分辨率与计算精度。提出了将体积元坐标搜索算法与交替数字二叉树搜索算法(ADT)相结合的方法来跟踪模拟分子在网格之间的迁移,使用ADT方法判别分子与物面是否作用,避免了分子表面反射的非确定论判据。利用Fortran 90的动态分配内存技术编制了通用计算程序。最后对高超声速过渡流域航天飞机头部外形绕流进行了数值模拟,数值结果初步验证了算法的可行性。  相似文献   

17.
The objective of this work is to develop a sliding interface method for simulations involving relative grid motion that is fast and efficient and involves no grid deformation, remeshing, or hole cutting. The method is implemented into a parallel, node‐centred finite volume, unstructured viscous flow solver. The rotational motion is accomplished by rigidly rotating the subdomain representing the moving component. At the subdomain interface boundary, the faces along the interface are extruded into the adjacent subdomain to create new volume elements forming a one‐cell overlap. These new volume elements are used to compute a flux across the subdomain interface. An interface flux is computed independently for each subdomain. The values of the solution variables and other quantities for the nodes created by the extrusion process are determined by linear interpolation. The extrusion is done so that the interpolation will maintain information as localized as possible. The grid on the interface surface is arbitrary. The boundary between the two subdomains is completely independent from one another; meaning that they do not have to connect in a one‐to‐one manner and no symmetry or pattern restrictions are placed on the grid. A variety of numerical simulations were performed on model problems and large‐scale applications to examine conservation of the interface flux. Overall solution errors were found to be comparable to that for fully connected and fully conservative simulations. Excellent agreement is obtained with theoretical results and results from other solution methodologies. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A hybrid building‐block Cartesian grid and gridless method is presented to compute unsteady compressible flows for complex geometries. In this method, a Cartesian mesh based on a building‐block grid is used as a baseline mesh to cover the computational domain, while the boundary surfaces are represented using a set of gridless points. This hybrid method combines the efficiency of a Cartesian grid method and the flexibility of a gridless method for the complex geometries. The developed method is used to compute a number of test cases to validate the accuracy and efficiency of the method. The numerical results obtained indicate that the use of this hybrid method leads to a significant improvement in performance over its unstructured grid counterpart for the time‐accurate solution of the compressible Euler equations. An overall speed‐up factor from six to more than one order of magnitude and a saving in storage requirements up to one order of magnitude for all test cases in comparison with the unstructured grid method are demonstrated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
We present in this paper an efficient and accurate volume of fluid (VOF) type scheme to compute moving interfaces on unstructured grids with arbitrary quadrilateral mesh elements in 2D and hexahedral elements in 3D. Being an extension of the multi‐dimensional tangent of hyperbola interface capturing (THINC) reconstruction proposed by the authors in Cartesian grid, an algebraic VOF scheme is devised for arbitrary quadrilateral and hexahedral elements. The interface is cell‐wisely approximated by a quadratic surface, which substantially improves the numerical accuracy. The same as the other THINC type schemes, the present method does not require the explicit geometric representation of the interface when computing numerical fluxes and thus is very computationally efficient and straightforward in implementation. The proposed scheme has been verified by benchmark tests, which reveal that this scheme is able to produce high‐quality numerical solutions of moving interfaces in unstructured grids and thus a practical method for interfacial multi‐phase flow simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a hybrid finite volume/finite element method for the incompressible generalized Newtonian fluid flow (Power-Law model). The collocated (i.e. non-staggered) arrangement of variables is used on the unstructured triangular grids, and a fractional step projection method is applied for the velocity-pressure coupling. The cell-centered finite volume method is employed to discretize the momentum equation and the vertex-based finite element for the pressure Poisson equation. The momentum interpolation method is used to suppress unphysical pressure wiggles. Numerical experiments demonstrate that the current hybrid scheme has second order accuracy in both space and time. Results on flows in the lid-driven cavity and between parallel walls for Newtonian and Power-Law models are also in good agreement with the published solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号