首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glioma-associated microglial cells, a key component of the tumor microenvironment, play an important role in glioma progression. In this study, the mouse glioma cell line GL261 and the mouse microglia cell line BV2 were chosen. First, circadian gene expression in glioma cells co-cultured with either M1 or M2 microglia was assessed and the exosomes of M2-polarized and unpolarized BV-2 microglia were extracted. Subsequently, we labeled the exosomes with PKH67 and treated GL261 cells with them to investigate the exosome distribution. GL261 cell phenotypes and related protein expression were used to explore the role of M2 microglial exosomes in gliomas. Then a specific miR-7239-3p inhibitor was added to verify miR-7239-3p functions. Finally, the mouse subcutaneous tumorigenic model was used to verify the tumorigenic effect of M2 microglial exosomes in vivo. Our results showed that in gliomas co-cultured with M2 microglia, the expression of the BMAL1 protein was decreased (P < 0.01), while the expression of the CLOCK protein was increased (P < 0.05); opposite results were obtained in gliomas co-cultured with M1 microglia. After treatment with M2 microglial exosomes, the apoptosis of GL261 cells decreased (P < 0.001), while the viability, proliferation, and migration of GL261 cells increased. Increased expression of N-cadherin and Vimentin, and decreased E-cadherin expression occurred upon treatment with M2 microglial exosomes. Addition of an miR-7239-3p inhibitor to M2 microglial exosomes reversed these results. In summary, we found that miR-7239-3p in the glioma microenvironment is recruited to glioma cells by exosomes and inhibits Bmal1 expression. M2 microglial exosomes promote the proliferation and migration of gliomas by regulating tumor-related protein expression and reducing apoptosis.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12264-020-00626-z.  相似文献   

2.
Human glioblastoma multiforme (GBM) is the most malignant form of human brain tumors. A characteristic of GBM is the marked presence of tumor infiltrated microglia/macrophages and lymphocytes. The goal of this study was directed toward understanding the role of the chemokine system CX3CL1 and its receptor CX3CR1 in the GL261 murine model of malignant glioma. In situ hybridization analysis identified CX3CL1 and CX3CR1 expression in GL261 tumors. The impact of CX3CR1 deletion on the growth of intracranial GL261 gliomas and associated immune cell infiltration was evaluated in CX3CR1 gene-disrupted C57BL/6 mice. A slight increase in the tumor growth rate in CX3CR1-/- mice was evident with similar numbers of microglia and CD4+, CD8+, FoxP3+, or Ly49G2+ lymphocytes within tumors established in CX3CR1 +/- and -/- mice. These data indicate that CX3CR1 has little or no effects on either gliomagenesis or the migration of microglia and lymphocytes into GL261 tumors.  相似文献   

3.
Microglia promote glioma migration   总被引:5,自引:1,他引:4  
Diffuse astrocytic gliomas extensively infiltrate brain tissue and contain numerous microglial cells, but it is unknown whether these two characteristic features are pathogenetically related. We therefore studied the effects of murine microglial cells on motility of GL261 mouse glioma cells using Boyden chamber assays. In the presence of microglia, glioma cell migration occurred earlier, and after 48 h it was threefold higher as compared to incubations without microglia. This effect was mediated by substances released from microglia, because similar effects were observed by microglia-conditioned medium, and it was specific to microglia, because oligodendroglia and endothelial cells only weakly stimulated glioma cell migration. Microglia activating substances (GM-CSF, LPS) led to a further increase of motility. These data support the notion that microglia accumulation in diffuse glial tumors does not merely represent a nonspecific reaction to tissue injury, but reflects participation of these cells in supporting and promoting the invasive phenotype of astrocytoma cells.  相似文献   

4.
5.
Toll-like receptors (TLRs) recognize a set of conserved molecular structures, so called pathogen-associated molecular patterns, which allow them to sense and initiate innate and adaptive immune responses. In this study, we examined the expression of TLRs in both human and murine glioma. We then analyzed the change in TLR expression after treatment with synthetic phosphorothioate oligodeoxynucleotides (ODNs) containing unmethylated CpG dinucleotides (CpG ODNs), strong activators of both innate and adaptive immunity. In addition, we investigated the in vivo effect of CpG injection into C57BL/6 mice implanted with syngeneic GL261 glioma. Our results indicate that TLR9 is overexpressed in human and murine glioma cell lines and CpG stimulation prolongs the survival of mice with experimental brain tumors. CpGs induce TLR9 down-regulation, followed by apoptosis of GL261 cells in vitro as well as in vivo. Furthermore, the effects of CpG stimulation appear to enhance the antigen presenting capacity of microglia, shift the immune response toward CD8(+) T cells, and decrease the number of CD4(+)CD25(+) regulatory T cells. Taken together, our data support the role of CpG in glioma immunotherapy and provide a rationale for further clinical development of CpG therapy in patients with malignant glioma.  相似文献   

6.
目的:探讨胶质细胞源性神经营养因子(GDNF)表达与人脑胶质细胞瘤恶性程度的关系。方法:分别应用原位杂交、免疫组化、流式细胞仪的方法检测GDNF在人脑胶质瘤中的表达水平。结果:GDNF在人脑胶质瘤和正常脑组织中均有表达,胶质瘤中的表达水平显高于正常脑组织,且随着胶质瘤恶性程度的增加表达水平也增加。结论:GDNF可能作为一种重要的因素参与了胶质瘤的发生、发展及分化,可作为胶质瘤病理分级检测的补充指标。  相似文献   

7.
Primary brain tumours (gliomas) initiate a strong host response and can contain large amounts of immune cells (myeloid cells) such as microglia and tumour-infiltrating macrophages. In gliomas the course of pathology is not only controlled by the genetic make-up of the tumour cells, but also depends on the interplay with myeloid cells in the tumour microenvironment. Especially malignant gliomas such as glioblastoma multiforme (GBM) are notoriously immune-suppressive and it is now evident that GBM cells manipulate myeloid cells to support tumour expansion. The protumorigenic effects of glioma-associated myeloid cells comprise a support for angiogenesis as well as tumour cell invasion, proliferation and survival. Different strategies for inhibiting the pathological functions of myeloid cells in gliomas are explored, and blocking the tropism of microglia/macrophages to gliomas or manipulating the signal transduction pathways for immune cell activation has been successful in pre-clinical models. Hence, myeloid cells are now emerging as a promising target for new adjuvant therapies for gliomas. However, it is also becoming evident that some myeloid-directed glioma therapies may only be beneficial for distinct subclasses of gliomas and that a more cell-type-specific manipulation of either microglia or macrophages may improve therapeutic outcomes.  相似文献   

8.
目的 研究人脑胶质瘤的microRNA-128(miR-128)表达水平及IDH1突变型、MGMT、Ki-67蛋白表达与胶质瘤病理分级、预后的关系.方法 收集脑胶质瘤手术标本21例,其中病理分级低级别者13例、高级别者8例;脑外伤清除组织6例.采用实时定量PCR法检测胶质瘤标本及胶质瘤细胞株U87、人小胶质细胞株HMC...  相似文献   

9.
目的研究不同级别胶质瘤组织中自噬相关蛋白LC3B的表达与CD68~+小胶质细胞、CD4~+和CD8~+T淋巴细胞数量的相关性并探讨其意义。方法采用免疫组化、Western blot检测127例不同级别胶质瘤及40例瘤旁正常组织中LC3B的表达,免疫组化检测CD68~+小胶质细胞、CD4~+和CD8~+T淋巴细胞的数量,分析其相关性及意义。结果 (1)免疫组化及Western blot检测结果显示LC3B的表达在瘤旁正常组织、低级别胶质瘤及高级别胶质瘤中呈不同程度的升高,且组间比较差异具有显著性(P0.05)。(2)CD68~+小胶质细胞、CD4~+和CD8~+T淋巴细胞在胶质瘤中的数量明显高于瘤旁正常组织(P0.05),且高级别胶质瘤明显高于低级别胶质瘤(P0.05)。(3)LC3B的表达与CD68~+小胶质细胞、CD4~+和CD8~+T淋巴细胞的数量在不同级别胶质瘤中均呈正相关,低级别胶质瘤中相关系数分别为0.466、0.599、0.537,高级别胶质瘤中相关系数分别为0.657、0.608、0.561。(4)胶质瘤中LC3B的表达及CD68~+小胶质细胞、CD4~+和CD8~+T淋巴细胞的数量均与肿瘤的大小有关(P0.05)。结论在胶质瘤组织中LC3B、CD68~+小胶质细胞、CD4~+和CD8~+T淋巴细胞均呈高表达,且LC3B的表达与CD68~+小胶质细胞、CD4~+和CD8~+T淋巴细胞的数量呈正相关,LC3B可能是影响胶质瘤细胞免疫的因素之一。  相似文献   

10.
Gliomas are highly invasive, lethal brain tumors. Tumor-associated proteases play an important role in glioma progression. Annexin A2 is overexpressed in many cancers and correlates with increased plasmin activity on the tumor cell surface, which mediates degradation of extracellular matrix and promotes neoangiogenesis to facilitate tumor growth. In this study, we used two glioma cell lines, mouse GL261-EGFP and rat C6/LacZ, as well as stable clones transfected with an annexin A2 knockdown construct. We find that the annexin A2 knockdown decreased glioma cell migration in vitro and decreased membrane-bound plasmin activity. In vivo, we injected the glioma cells into the rodent brain and followed glioma progression. Knockdown of annexin A2 in glioma cells decreased tumor size and slowed tumor progression, as evidenced by decreased invasion, angiogenesis, and proliferation, as well as increased apoptosis in the tumor tissue of the annexin A2 knockdown group. Moreover, we report that the levels of expression of annexin A2 in human glioma samples correlate with their degree of malignancy. Together, our findings demonstrate that inhibition of annexin A2 expression in glioma cells could become a new target for glioma therapy.  相似文献   

11.
We have used an immunocytochemical approach to investigate the inter-relationships between astrocytes, macrophages and microglia and the extracellular matrix components fibronectin and laminin, in 27 gliomas. Using recently available markers to macrophages and microglia (monoclonals Mac387, KP1 and the lectin RCA-1) and antisera to GFAP, fibronectin and laminin, we have described the reactions of these cells and the extracellular matrix. We found RCA-1 to be the superior marker for detecting most macrophages and microglia. There were more macrophages and microglia in high-grade gliomas than in low-grade. RCA-1 also reacted with endothelial cells in normal and reactive brain but showed markedly less affinity for endothelium in an close to gliomas. A possible role for the extracellular matrix in the astrocyte, macrophage and microglial reactions is discussed in the broader context of their role in the immune response.  相似文献   

12.
Activation of microglia by interferon-gamma (IFN-gamma) has been implicated in a number of central nervous system (CNS) inflammatory disease processes. Because IFN-gamma has also been shown to play a role in programmed cell death, we investigated its cytotoxicity and its effect on the Fas apoptotic pathway in microglia. Flow cytometry was used to quantify the IFN-gamma-mediated apoptotic response and Fas and Fas ligand (FasL) expression in two well-characterized murine microglia cell lines (BV-2 and N9). Nuclear fragmentation, suggestive of apoptosis, was noted within 24 h of incubation of microglia with IFN-gamma (10 U/ml). After a 72-h incubation, almost every BV-2 and N9 microglia, but not GL261 glioma cells, underwent cell death and detached from the culture plates. This cytotoxicity occurred even at low IFN-gamma concentrations (1 U/ml) and was inhibited by BAF, a pan-caspase inhibitor. Incubation of BV-2 and N9 microglia, but not GL261 glioma cells, with IFN-gamma also potentiated the expression of Fas and FasL in a similar dose-response and time-course manner, as seen for the apoptotic response. Whereas Fas expression increased by 100% in both microglia cells, FasL upregulation was more pronounced and increased by as much as 200% in the N9 cells. These findings suggest that in addition to its role as a microglia activator, IFN-gamma may also induce apoptosis of microglia, possibly through simultaneous upregulation of Fas and FasL. Interferon-gamma modulation of the Fas pathway and apoptosis in microglia may be important in the pathogenesis of inflammatory CNS disease processes.  相似文献   

13.
The role of microglia, the brain resident macrophages, in glioma biology is still ill-defined. Despite their cytotoxic potential, these cells that significantly infiltrate the tumor mass seem to support tumor growth rather than tumor eradication. A proper activation of microglia anti-tumor activities within the tumor may provide a valuable additional arm of defense to immunotherapies against brain tumors. We herewith report a detailed characterization of (lipopolysaccharide and interferon-gamma)-induced anti-tumor activities of mouse primary microglia towards two TNF-alpha and TRAIL resistant glioma cell lines, in cell monolayer or spheroid cultures and in collagen-embedded tumor explants. Irrespective of the mouse strain, stimulated microglia secreted proteic factors that decreased proliferation and migration of these glioma cells and efficiently killed them. Death occurred specifically in glioma cells as demonstrated by the lack of toxicity of microglia supernatant towards primary cultures of astrocytes or neurons. Cell death was characterized by the early accumulation of acidic vesicles, phosphatidylserine exposure, appearance of double-membrane cytoplasmic vesicles, extensive zeiosis and a very late loss of DNA in cells that had lost membrane integrity. Inhibition of autophagosome formation efficiently protected glioma cells from death whereas caspase inhibition could only prevent DNA loss but not cytotoxicity. Death however, resulted from a blockade by microglia supernatant of the basal autophagic flux present in the glioma cells. These observations demonstrate that glioma cells resistant to apoptotic death ligands could be successfully and specifically killed through autophagy-dependent death induced by appropriately activated microglia.  相似文献   

14.
To assess the immune function of microglia and macrophages in brain tumors, the expression of MHC class II and B7 costimulatory molecules in three rodent glioma models was examined. Microglia and macrophages, which accounted for 5-12% of total cells, expressed B7.1 and MHC class II molecules in the C6 and 9L tumors, but not RG2 gliomas. Interestingly, the expression of B7.1 and MHC class II molecules by microglia and macrophage was associated with an increase in the number of tumor-infiltrating lymphocytes in C6 and 9L tumors. B7.2 expression, which was present at low levels on microglia and macrophages in normal brain, did not significantly change in tumors. Interestingly, the expression of all three surface antigens increased after microglia were isolated from intracranial C6 tumors and cultured for a short period of time. We conclude that microglia immune activity may be suppressed in gliomas and directly correlates to the immunogenecity of experimental brain tumors.  相似文献   

15.
Gliomas represent the most frequent type of human brain tumor, and their strong invasiveness is a significant clinical problem. Microglia, the immunocompetent cells of the brain, contribute significantly to the tumor and are potential interaction partners of the glioma cells. We studied the impact of the presence of microglia on tumor cell invasion in cultured brain slices. To selectively deplete microglia, the slices were treated with clodronate-filled liposomes. When glioma cells were injected into slices devoid of endogenous microglia, the invasiveness of the tumors was significantly decreased as compared with controls. Inoculation of exogenous microglia together with glioma cells into cultured brain slices increased the infiltrative behavior of the tumor depending on the microglia/glioma cell ratio. Cell culture experiments revealed that soluble factors released from glioma cells strongly stimulate metalloprotease-2 activity in microglia. In the brain slices inoculated with glioma cells, increased activity of metalloprotease-2 was directly correlated with the abundance of microglia. Our data indicate that glioma cells stimulate microglial cells to increase breakdown of extracellular matrix and thereby promote tumor invasiveness.  相似文献   

16.
Zhang L  Liu W  Alizadeh D  Zhao D  Farrukh O  Lin J  Badie SA  Badie B 《Glia》2011,59(3):486-498
Despite significant infiltration into tumors, the effector function of macrophages (MPs) and microglia (MG) appears to be suppressed in gliomas. Although STAT3 pathway is thought to play a role in this process, the exact mechanism by which gliomas induce STAT3 activation in MPs and MG is not known. Because activation of receptor for advanced glycation end products (RAGE) can induce STAT3, and because gliomas express high levels of S100B, a RAGE ligand, we hypothesized that MP/MG STAT3 activity may be modulated through S100B-RAGE interaction. Exposure of N9 MG and bone marrow-derived monocytes (BMM) to GL261 glioma condition medium (GCM) and low (nM) levels of S100B increased RAGE expression, induced STAT3 and suppressed MG function in vitro. Furthermore, neutralization of S100B in GCM, partially reversed IL-1β suppression in BMM, suggesting that the inhibitory effect of GCM to be in part due to S100B. Finally, blockage of S100B-RAGE interaction inhibited STAT3 activation in N9 MG and in glioma MG/MP in vivo. These findings suggest that the RAGE pathway may play an important role in STAT3 induction in glioma-associated MG/MPs, and that this process may be mediated through S100B.  相似文献   

17.
Glial cell-line derived neurotrophic factor (GDNF) is a neurotrophic factor known to promote neuronal survival of dopaminergic neurons in the embryonic midbrain as well as contribute to carcinogenesis in many cancers. Its ubiquitous presence in the central nervous system suggests a role in the mitogenesis of high-grade astrocytoma. GDNF is overexpressed in glioblastoma cell lines and human gliomas. GFRα1b is the predominant spliced receptor isoform in human gliomas and RET9 is the predominant co-receptor. Significantly there is differential overexpression of the GFRα1b spliced isoform compared to the GFRα1a spliced variant. Pre-treatment of glioblastoma cell lines with GDNF but not the alternative ligand neurturin, promoted mitogenic behaviour and conferred chemoresistance to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). Signaling mapping of BCNU and GDNF suggest that the ability of GDNF to promote Akt activity and inhibit JNK activity may contribute to the increased cellular survival after BCNU chemotherapy.  相似文献   

18.
We previously reported that glioma cells induce the expression of membrane‐type 1 metalloproteinase (MT1‐MMP or MMP‐14) in tumor‐associated microglia/macrophages and promote tumor growth, whereas MMP‐14 expression in microglia under physiological conditions is very low. Here, we show that the increase in MMP‐14 expression is also found in microglia/macrophages associated with neurodegenerative and neuroinflammatory pathologies in mouse models as well as in human biopsies or post‐mortem tissue. We found that microglial/macrophage MMP‐14 expression was upregulated in Alzheimer's disease tissue, in active lesions of multiple sclerosis, and in tissue from stage II stroke as well as in the corresponding mouse models for the human diseases. In contrast, we observed no upregulation for MMP‐14 in microglia/macrophages in the early phase of stroke or in the corresponding mouse model, in human amyotrophic lateral sclerosis (ALS) tissue or in a mouse model of ALS as well as in human cases of acute brain trauma. These data indicate that MMP‐14 expression is not a general marker for activated microglia/macrophages but is upregulated in defined stages of neuroinflammatory and neurodegenerative diseases and that there is generally a good match between mouse models and human brain pathologies. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
目的 ;建立GL261胶质瘤细胞C57BL/6小鼠、C6胶质瘤细胞SD大鼠及BALB/c小鼠皮下动物模型,比较其肿瘤生长特点。方法借助动物立体定向仪,将体外培养小鼠GL261、大鼠C6胶质瘤细胞分别接种于C57BL/6小鼠及SD大鼠右侧尾状核区,C6胶质瘤细胞接种于BALB/c小鼠左前肢皮下。接种后观察不同种实验鼠的生存状态及肿瘤的生长特性,颅内模型于接种后7d、14d、21d、28d进行MRI检查,皮下模型测量体积,并绘制生长曲线。解剖标本,做组织病理学和胶质纤维酸性蛋(GFAP)免疫组化检查。结果 GL261胶质瘤细胞C57BL/6小鼠模型较之后两种模型在组织病理学上接近人脑胶质瘤,而且颅内生长稳定,成瘤率高,未见颅外转移病灶,实验周期短,重复性好。结论 GL261胶质瘤细胞C57BL/6小鼠模型,其肿瘤生长特性及病理特征与人脑胶质瘤相似,可作为临床胶质瘤基础研究的理想模型。  相似文献   

20.
Activation of microglia by interferon-γ (IFN-γ) has been implicated in a number of central nervous system (CNS) inflammatory disease processes. Because IFN-γ has also been shown to play a role in programmed cell death, we investigated its cytotoxicity and its effect on the Fas apoptotic pathway in microglia. Flow cytometry was used to quantify the IFN-γ-mediated apoptotic response and Fas and Fas ligand (FasL) expression in two well-characterized murine microglia cell lines (BV-2 and N9). Nuclear fragmentation, suggestive of apoptosis, was noted within 24 h of incubation of microglia with IFN-γ (10 U/ml). After a 72-h incubation, almost every BV-2 and N9 microglia, but not GL261 glioma cells, underwent cell death and detached from the culture plates. This cytotoxicity occurred even at low IFN-γ concentrations (1 U/ml) and was inhibited by BAF, a pan-caspase inhibitor. Incubation of BV-2 and N9 microglia, but not GL261 glioma cells, with IFN-γ also potentiated the expression of Fas and FasL in a similar dose–response and time-course manner, as seen for the apoptotic response. Whereas Fas expression increased by 100% in both microglia cells, FasL upregulation was more pronounced and increased by as much as 200% in the N9 cells. These findings suggest that in addition to its role as a microglia activator, IFN-γ may also induce apoptosis of microglia, possibly through simultaneous upregulation of Fas and FasL. Interferon-γ modulation of the Fas pathway and apoptosis in microglia may be important in the pathogenesis of inflammatory CNS disease processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号