首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The problem of blind adaptive joint multiuser detection and equalization in direct-sequence code division multiple access (DS/CDMA) systems operating over fading dispersive channels is considered. A blind and code-aided detection algorithm is proposed, i.e., the procedure requires knowledge of neither the interfering users' parameters (spreading codes, timing offsets, and propagation channels), nor the timing and channel impulse response of the user of interest but only of its spreading code. The proposed structure is a two-stage one: the first stage is aimed at suppressing the multiuser interference, whereas the second-stage performs channel estimation and data detection. Special attention is paid to theoretical issues concerning the design of the interference blocking stage and, in particular, to the development of general conditions to prevent signal cancellation under vanishingly small noise. A statistical analysis of the proposed system is also presented, showing that it incurs a very limited loss with respect to the nonblind minimum mean square error detector, outperforms other previously known blind systems, and is near-far resistant. A major advantage of the new structure is that it admits an adaptive implementation with quadratic (in the processing gain) computational complexity. This adaptive algorithm, which couples a recursive-least-squares estimation of the blocking matrix and subspace tracking techniques, achieves effective steady-state performance.  相似文献   

2.
The problem of blind demodulation of multiuser information symbols in a high-rate code-division multiple-access (CDMA) network in the presence of both multiple-access interference (MAI) and intersymbol interference (ISI) is considered. The dispersive CDMA channel is first cast into a multiple-input multiple-output (MIMO) signal model framework. By applying the theory of blind MIMO channel identification and equalization, it is then shown that under certain conditions the multiuser information symbols can be recovered without any prior knowledge of the channel or the users' signature waveforms (including the desired user's signature waveform), although the algorithmic complexity of such an approach is prohibitively high. However, in practice, the signature waveform of the user of interest is always available at the receiver. It is shown that by incorporating this knowledge, the impulse response of each user's dispersive channel can be identified using a subspace method. It is further shown that based on the identified signal subspace parameters and the channel response, two linear detectors that are capable of suppressing both MAI and ISI, i.e., a zero-forcing detector and a minimum-mean-square-error (MMSE) detector, can be constructed in closed form, at almost no extra computational cost. Data detection can then be furnished by applying these linear detectors (obtained blindly) to the received signal. The major contribution of this paper is the development of these subspace-based blind techniques for joint suppression of MAI and ISI in the dispersive CDMA channels  相似文献   

3.
In many physical channels where multiuser detection techniques are to be applied, the ambient channel noise is known through experimental measurements to be decidedly non-Gaussian, due largely to impulsive phenomena. This is due to the impulsive nature of man-made electromagnetic interference and a great deal of natural noise. This paper presents a robust multiuser detector for combating multiple access interference and impulsive noise in code division multiple access (CDMA) communication systems. A new M-estimator is proposed for "robustifying" the detector. The approach is corroborated with simulation results to evaluate the performance of the proposed robust multiuser detector compared with that of the linear decorrelating detector, and the Huber and the Hampel M-estimator based detectors. Simulation results show that the proposed detector with significant performance gain outperforms the linear decorrelating detector, and the Huber and the Hampel M-estimator based detectors. This paper also presents an improved robust blind multiuser detection technique based on a subspace approach, which requires only the signature waveform and the timing of the desired user to demodulate that user's signal. Finally, we show that the robust multiuser detection technique and its blind adaptive version can be applied to both synchronous and asynchronous CDMA channels.  相似文献   

4.
异步DS-CDMA系统盲空时信道估计及多用户检测   总被引:1,自引:0,他引:1  
该文提出了适用于频率选择性瑞利衰落信道中的异步DS-CDMA系统盲空时信道估计及多用户检测算法。通过研究多径信号码空间和数据矢量空间,采用噪声子空间技术进行异步DS-CDMA系统盲空时信道参数估计,同时利用了多径传播和接收机同步失调的特性,以利于把盲线性滤波优化技术应用于稳健的干扰抑制。使用一种修改的ULV更新算法进行噪声子空间跟踪,该算法不需要相关矩阵的秩估计,直接估计噪声子空间,不进行信号子空间跟踪。并且研究了线性约束最小方差(LCMV)盲空时多用户检测及其基于Householder变换约束最小均方算法(HCLMS)的自适应实现。仿真结果验证了该文算法的有效性。  相似文献   

5.
Group-blind multiuser detection for uplink CDMA   总被引:16,自引:0,他引:16  
Previously developed blind techniques for multiuser detection in code division multiple access (CDMA) systems lead to several near-far resistant adaptive receivers for demodulating a given user's data with the prior knowledge of only the spreading sequence of that user. In the CDMA uplink, however, typically the base station receiver has the knowledge of the spreading sequences of all the users within the cell, but not that of the users from other cells. In this paper, group-blind techniques are developed for multiuser detection in such scenarios. These new techniques make use of the spreading sequences and the estimated multipath channels of all known users to suppress the intracell interference, while blindly suppressing the intercell interference. Several forms of group-blind linear detectors are developed based on different criteria. Moreover, group-blind multiuser detection in the presence of correlated noise is also considered. In this case, two receiving antennas are needed for channel estimation and signal separation. Simulation results demonstrate that the proposed group-blind linear multiuser detection techniques offer substantial performance gains over the blind linear multiuser detection methods in a CDMA uplink environment  相似文献   

6.
码分多址系统中抗远近效应的多用户盲均衡接收方案   总被引:1,自引:1,他引:0  
梅玉平  李道本 《电子学报》1998,26(10):15-18,65
针对码多址系统中多径瑞利衰落信息的远近效应,我们提出了用户盲均衡检测方案,并与多极检测法进行了比较研究,数值模拟表明,多用户盲均衡检测方案的抗远近效应能力优于无信道估计误差的二级检测。  相似文献   

7.
Robust multiuser detection in non-Gaussian channels   总被引:7,自引:0,他引:7  
In many wireless systems where multiuser detection techniques may be applied, the ambient channel noise is known through experimental measurements to be decidedly non-Gaussian, due largely to impulsive phenomena. The performance of many multiuser detectors can degrade substantially in the presence of such impulsive ambient noise. We develop robust multiuser detection techniques for combating multiple-access interference and impulsive noise in CDMA communication systems. These techniques are based on the M-estimation method for robust regression. Analytical and simulation results show that the proposed robust techniques offer significant performance gain over linear multiuser detectors in impulsive noise, with little attendant increase in computational complexity. We also develop a subspace-based technique for blind adaptive implementation of the robust multiuser detectors, which requires only the signature waveform and the timing of the desired user in order to demodulate that user's signal. The robust multiuser detection technique and its blind adaptive version can be applied to both synchronous and asynchronous CDMA channels  相似文献   

8.
数字移动通信中的抗多径衰落技术   总被引:2,自引:0,他引:2  
尤肖虎  陈国安 《电子学报》1995,23(10):12-18
移动信道的主要特征是由移动和多径传播所产生的多径衰落现象。在高速移动通信系统中,必须采用抗多径衰落技术,才能实现有效传输。本文首先概述了移动信道的数学模型及其典型形式,在此基础上,分别讨论了时分多址(TDMA)和码分多址(CDMA)系统的抗多径衰落方法──自适应信道均衡技术及多径分集接收技术,并简述了近年来较为活跃的多用户检测技术和自适应天线分集技术。  相似文献   

9.
This paper addresses the problem of channel tracking and equalization for multi-input multi-output (MIMO) time-varying frequency-selective channels. These channels model the effects of inter-symbol interference (ISI), co-channel interference (CCI), and noise. A low-order autoregressive model approximates the MIMO channel variation and facilitates tracking via a Kalman filter. Hard decisions to aid Kalman tracking come from a MIMO finite-length minimum-mean-squared-error decision-feedback equalizer (MMSE-DFE), which performs the equalization task. Since the optimum DFE for a wide range of channels produces decisions with a delay Δ > 0, the Kalman filter tracks the channel with a delay. A channel prediction module bridges the time gap between the channel estimates produced by the Kalman filter and those needed for the DFE adaptation. The proposed algorithm offers good tracking behavior for multiuser fading ISI channels at the expense of higher complexity than conventional adaptive algorithms. Applications include synchronous multiuser detection of independent transmitters, as well as coordinated transmission through many transmitter/receiver antennas, for increased data rate  相似文献   

10.
The problem of blind multiuser detection in dispersive channels of Code-Division Multiple-Access (CDMA) in the presence of both Multiple-Access Interference (MAI) and In-terSymbol Interference (ISI) is considered. In practice, it is showed that by incorporating the desired user's signature waveform and the auxiliary vector, the information of the user can be identified using the suboptimal subspace method. The major contribution of this paper is to propose a minimum-mean-square-error detector with the suboptimal subspace-based blind technique for joint suppression of MAI and ISI in the dispersive CDMA channels.  相似文献   

11.
The linear subspace-based blind and group-blind multiuser detectors recently developed represent a robust and efficient adaptive multiuser detection technique for code-division multiple-access (CDMA) systems. In this paper, we consider adaptive transmitter optimization strategies for CDMA systems operating in fading multipath environments in which these detectors are employed. We make use of more recent results on the analytical performance of these blind and group-blind receivers in the design and analysis of the transmitter optimization techniques. In particular, we develop a maximum-eigenvector-based method of optimizing spreading codes for given channel conditions and a utility-based power control algorithm for CDMA systems with blind or group-blind multiuser detection. We also design a receiver incorporating joint optimization of spreading codes and transmitter power by combining these algorithms in an iterative configuration. We will see that the utility-based power control algorithm allows us to efficiently set performance goals through utility functions for users in heterogeneous traffic environments and that spreading code optimization allows us to achieve these goals with lower transmit power. The signal processing algorithms presented here maintain the blind (or group-blind) nature of the receiver and are distributed, i.e., all power and spreading code adjustments can be made using only locally available information.  相似文献   

12.
We develop a blind adaptive multiuser detector for synchronous code-division multiple access (CDMA) with a noise-whitening filter. The triangular structure of the noise-whitened model ensures complete resolution of detection ambiguities. To further improve the symbol error probability performance, we introduce decision feedback in our detector similar to the decorrelating derision-feedback detector (DDFD), thus forming the decision-feedback blind adaptive multiuser detector (DFBD). Simulations indicate that the performance of the DFBD is very close to that of the DDFD in additive white Gaussian noise (AWGN) channels. In Rician fading channels, the DFBD can track the slowly varying channels well and has a symbol error probability performance approaching that of the DDFD, which requires the knowledge of users' energies. The blind adaptive and decision-feedback blind adaptive multiuser detectors proposed here do not, however, require that knowledge  相似文献   

13.
In this paper, we study the performance of subspace‐based multiuser detection techniques for multicarrier code‐division multiple access (MC‐CDMA) systems. We propose an improvement in the PASTd algorithm by cascading it with the classical Gram‐Schmidt procedure to orthonormalize the eigenvectors after their sequential extraction. The tracking of signal subspace using this algorithm, which we call OPASTd, has a faster convergence as the eigenvectors are orthonormalized at each discrete time sample. This improved PASTd algorithm is then used to implement the subspace blind adaptive multiuser detection for MC‐CDMA. We also show that, for multiuser detection, the complexity of the proposed scheme is lower than that of many other orthogonalization schemes found in the literature. Extensive simulation results are presented and discussed to demonstrate the performance of the proposed scheme.  相似文献   

14.
Wang and Host-Madsen (see IEEE J. Select. Areas Commun., vol.17, p.1971-84, 1999) developed group-blind multiuser detectors for use in code-division multiple-access (CDMA) uplink environments in which the base station receiver has the knowledge of the spreading sequences of all the users within the cell, but not that of the users from other cells. Yu and Host-Madsen (see Proc. IEEE Vehicular Technology Conf. (VTC99), Houston, TX, p.1042-46, 1999) later developed an adaptive version of this detector for synchronous CDMA channels. We develop a new low-complexity, high-performance subspace tracking algorithm and apply it to adaptive group-blind multiuser detection in asynchronous multipath CDMA channels. The detector can track changes in the number of users and their composite signature waveforms. We present steady-state performance as well as the ability of the receiver to track changes in the signal subspace. We also address the performance gain of the group-blind detector over its blind counterpart for this application  相似文献   

15.
Blind multiuser detection: a subspace approach   总被引:24,自引:0,他引:24  
A new multiuser detection scheme based on signal subspace estimation is proposed. It is shown that under this scheme, both the decorrelating detector and the linear minimum-mean-square-error (MMSE) detector can be obtained blindly, i.e., they can be estimated from the received signal with the prior knowledge of only the signature waveform and timing of the user of interest. The consistency and asymptotic variance of the estimates of the two linear detectors are examined. A blind adaptive implementation based on a signal subspace tracking algorithm is also developed. It is seen that compared with the previous minimum-output-energy blind adaptive multiuser detector, the proposed subspace-based blind adaptive detector offers lower computational complexity, better performance, and robustness against signature waveform mismatch. Two extensions are made within the framework of signal subspace estimation. First, a blind adaptive method is developed for estimating the effective user signature waveform in the multipath channel. Secondly, a multiuser detection scheme using spatial diversity in the form of an antenna array is considered. A blind adaptive technique for estimating the array response for diversity combining is proposed. It is seen that under the proposed subspace approach, blind adaptive channel estimation and blind adaptive array response estimation can be integrated with blind adaptive multiuser detection, with little attendant increase in complexity  相似文献   

16.
Input signal recovery from frequency-selective fading channels is a problem of great theoretical and practical importance. We present several new blind algorithms that utilize second-order statistics for direct multichannel equalization. The algorithms are based on the subspace extraction of a preselected block column of the channel convolution matrix. For a multiuser system, user signal separation can be achieved based on partial information of the composite channel response. These equalization algorithms do not rely on the precise separation of signal and noise subspaces and therefore tend to be less sensitive to channel order (or column rank) estimation errors. Equalization is directly achieved without channel identification. Furthermore, the equalizability conditions of these algorithms are discussed  相似文献   

17.
In this paper, the applicability of the subspace-based blind adaptive algorithm in multiple access ultra-wideband systems is investigated. However, in the multiuser transmission environment, multiple access interference becomes a serious issue and results in the degradation of system performance. In order to overcome this shortcoming, we propose a novel and low complexity decision mechanism, termed the decision timing instant (DTI). A major advantage of the DTI algorithm is that it admits an adaptive implementation with low computational complexity instead of singular value decomposition. In the present paper, we exploit the joint blind multiuser detection in UWB systems, a combined scheme is proposed, which couples the minimum-mean-square-error and the DTI subspace tracking algorithm under UWB time-variant channels. Simulation results show that DTI is able to fast and precisely trace the variation of the channel environment and to improve the performance of the blind adaptive multiuser detection with a subspace approach over time-varying channels.  相似文献   

18.
In this paper, the problem of subspace-based blind adaptive multiuser detection in multirate direct-sequence code-division multiple-access (DS-CDMA) systems adopting short (periodic) spreading codes is considered. The solution that we propose is based on the well-known formulation of the linear minimum mean-squared error and decorrelating detectors in terms of signal subspace parameters. Since in a multirate scenario the correlation properties of the observable and, hence, the signal subspace parameters are periodically time-varying, classical subspace tracking algorithms, which assume that the subspace to be tracked is time-invariant or slowly time-varying, are shown to be not useful in this situation. A new recursive cyclic subspace tracking algorithm is thus developed. This procedure, which is based on a generalization of the PASTd algorithm, is able to capture the periodical variations of the signal subspace, and thus enables subspace-based blind adaptive multiuser detection in multirate CDMA systems. The proposed algorithm has a smaller computational complexity than the recently developed cyclic recursive-least-squares procedure, and, as numerical results confirm, is capable of providing very satisfactory performance.  相似文献   

19.
1 IntroductionThereiscurrentlyasignificantinterestinthedesignofhigh ratewirelessCodeDivisionMultipleAccess (CDMA)networks[1 ,9~1 0 ] .InthisCDMAsystem ,eachuserisassignedauniquesignaturewaveformthatisusedtomodulateitstransmittedsymbols.Itis,however,notpossiblet…  相似文献   

20.
We discuss a synchronous direct-sequence code division multiple-access (DS-CDMA) system based on block spreading in the presence of frequency-selective fading. Note that block spreading, which is also known as chip interleaving, refers to a spreading of a data block sequence, which is obtained by dividing a data symbol sequence into consecutive blocks. For such a system, we develop a simple new receiver that completely removes the multiuser interference (MUI) without using any channel information. The MUI-free operation is obtained by the use of a shift-orthogonal set of code sequences on which this receiver is based. Within the framework of the MUI-free receiver, we further present a subspace deterministic blind single-user channel estimation algorithm. As a benchmark for the MUI-free receiver and the corresponding subspace deterministic blind single-user channel estimation algorithm, we consider the linear multiuser equalizer and the corresponding subspace deterministic blind multiuser channel estimation algorithm developed by Liu and Xu (1996) for a standard synchronous DS-CDMA system in the presence of frequency-selective fading. We show that the complexity of the MUI-free receiver using the corresponding subspace deterministic blind single-user channel estimation algorithm is much smaller than the complexity of the linear multiuser equalizer using the corresponding subspace deterministic blind multiuser channel estimation algorithm. We further show that the performance of the MUI-free receiver is comparable with the performance of the linear multiuser equalizer. This is for the case in which the channels are known as well as for the case in which the channels are estimated with the corresponding subspace deterministic blind channel estimation algorithm  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号