首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The steady state kinetic parameters Km and kcat for the oxidation of phenolic substrates by lignin peroxidase correlated with the presteady state kinetic parameters Kd and k for the reaction of the enzyme intermediate compound II with the substrates, indicating that the latter is the rate-limiting step in the catalytic cycle. ln Km and ln Kd values for phenolic substrates correlated with redox properties, unlike ln kcat and ln k. This finding suggests that in contrast to horseradish peroxidase, electron transfer is not the rate-limiting step during oxidation by lignin peroxidase compound II. A mechanism is proposed for lignin peroxidase compound II reactions consisting of an equilibrium electron transfer step followed by a subsequent rate-limiting step. Analysis of the correlation coefficients for linear relationships between ln Kd and ln Km and different calculated redox parameters supports a mechanism in which the acidic forms of phenols are oxidized by lignin peroxidase and electron transfer is coupled with proton transfer. 1,2-Dimethoxyarenes did not comply with the trend for phenolic substrates, which may be a result of more than one substrate binding site on lignin peroxidase and/or alternative binding modes. This behavior was supported by analogue studies with the 1,2-dimethoxyarenes veratric acid and veratryl aldehyde, both of which are not oxidized by lignin peroxidase. Inclusion of either had little effect on the rate of oxidation of phenolic substrates yet resulted in a decrease in the oxidation rate of 1,2-dimethoxyarene substrates, which was considerable for veratryl alcohol and less pronounced for 3,4-dimethoxyphenethylalcohol and 3,4-dimethoxycinnamic acid, in particular in the presence of veratric acid.  相似文献   

2.
M Santimone 《Biochimie》1975,57(3):265-270
The kinetics of compound II formation, obtained upon mixing a highly purified horseradish peroxidase and hydrogen peroxide, was spectrophotometrically studied at three wavelengths in the absence of an added reducing agent. Our experiments confirm George's finding that more than one mole of compound II is formed per mole of hydrogen peroxide added. The new mechanism that we propose, contrary to the mechanism of George, is only valid when compound II is obtained in the absence of an added donor. Moreover, it is not inconsistent with the classical Chance mechanism of oxidation of an added donor by the system peroxidase -- hydrogen peroxide. According to this new mechanism, in the absence of an added donor, compound II formation involved two pathways. The first pathway is the monomolecular reduction of compound I by the endogenous donor, and the second pathway is the formation of two moles of compound II through the oxidoreduction reaction between one mole of peroxidase and one mole of compound I.  相似文献   

3.
The catalytic constant (k(cat)) and the second-order association constant of compound II with reducing substrate (k(5)) of horseradish peroxidase C (HRPC) acting on phenols and anilines have been determined from studies of the steady-state reaction velocities (V(0) vs. [S(0)]). Since k(cat)=k(2)k(6)/k(2)+k(6), and k(2) (the first-order rate constant for heterolytic cleavage of the oxygen-oxygen bond of hydrogen peroxide during compound I formation) is known, it has been possible to calculate the first-order rate constant for the transformation of each phenol or aniline by HRPC compound II (k(6)). The values of k(6) are quantitatively correlated to the sigma values (Hammett equation) and can be rationalized by an aromatic substrate oxidation mechanism in which the substrate donates an electron to the oxyferryl group in HRPC compound II, accompanied by two proton additions to the ferryl oxygen atom, one from the substrate and the other the protein or solvent. k(6) is also quantitatively correlated to the experimentally determined (13)C-NMR chemical shifts (delta(1)) and the calculated ionization potentials, E (HOMO), of the substrates. Similar dependencies were observed for k(cat) and k(5). From the kinetic analysis, the absolute values of the Michaelis constants for hydrogen peroxide and the reducing substrates (K(M)(H(2)O(2)) and K(M)(S)), respectively, were obtained.  相似文献   

4.
The reaction kinetics of the peroxidase activity of prostaglandin H synthase have been examined with 15-hydroperoxyeicosatetraenoic acid and hydrogen peroxide as substrates and tetramethylphenylenediamine as cosubstrate. The apparent Km and Vmax values for both hydroperoxides were found to increase linearly with the cosubstrate concentration. The overall reaction kinetics could be interpreted in terms of an initial reaction of the synthase with hydroperoxide to form an intermediate equivalent to horseradish peroxidase Compound I, followed by reduction of this intermediate by cosubstrate to regenerate the resting enzyme. The rate constants estimated for the generation of synthase Compound I were 7.1 X 10(7) M-1 s-1 with the lipid hydroperoxide and 9.1 X 10(4) M-1 s-1 with hydrogen peroxide. The rate constants estimated for the rate-determining step in the regeneration of resting enzyme by cosubstrate were 9.2 X 10(6) M-1 s-1 in the case of the reaction with lipid hydroperoxide and 3.5 X 10(6) M-1 s-1 in the case of reaction with hydrogen peroxide. The intrinsic affinities of the synthase peroxidase for substrate (Ks) were estimated to be on the order of 10(-8) M for lipid hydroperoxide and 10(-5) M for hydrogen peroxide. These affinities are quite similar to the reported affinities of the synthase for these hydroperoxides as activators of the cyclooxygenase. The peroxidase activity was found to be progressively inactivated during the peroxidase reaction. The rate of inactivation of the peroxidase was increased by increases in hydroperoxide level, and decreased by increases in peroxidase cosubstrate. The inactivation of the peroxidase appeared to occur by a hydroperoxide-dependent process, originating from synthase Compound I or Compound II.  相似文献   

5.
The mechanism of organosulfur oxygenation by peroxidases [lactoperoxidase (LPX), chloroperoxidase, thyroid peroxidase, and horseradish peroxidase] and hydrogen peroxide was investigated by use of para-substituted thiobenzamides and thioanisoles. The rate constants for thiobenzamide oxygenation by LPX/H2O2 were found to correlate with calculated vertical ionization potentials, suggesting rate-limiting single-electron transfer between LPX compound I and the organosulfur substrate. The incorporation of oxygen from 18O-labeled hydrogen peroxide, water, and molecular oxygen into sulfoxides during peroxidase-catalyzed S-oxygenation reactions was determined by LC- and GC-MS. All peroxidases tested catalyzed essentially quantitative oxygen transfer from 18O-labeled hydrogen peroxide into thiobenzamide S-oxide, suggesting that oxygen rebound from the oxoferryl heme is tightly coupled with the initial electron transfer in the active site. Experiments using H2(18)O2, 18O2, and H2(18)O showed that LPX catalyzed approximately 85, 22, and 0% 18O-incorporation into thioanisole sulfoxide oxygen, respectively. These results are consistent with a active site controlled mechanism in which the protein radical form of LPX compound I is an intermediate in LPX-mediated sulfoxidation reactions.  相似文献   

6.
The rate of color formation in an activity assay consisting of phenol and hydrogen peroxide as substrates and 4-aminoantipyrine as chromogen is significantly influenced by hydrogen peroxide concentration due to its inhibitory effect on catalytic activity. A steady-state kinetic model describing the dependence of peroxidase activity on hydrogen peroxide concentration is presented. The model was tested for its application to soybean peroxidase (SBP) and horseradish peroxidase (HRP) reactions based on experimental data which were measured using simple spectrophotometric techniques. The model successfully describes the dependence of enzyme activity for SBP and HRP over a wide range of hydrogen peroxide concentrations. Model parameters may be used to compare the rate of substrate utilization for different peroxidases as well as their susceptibility to compound III formation. The model indicates that SBP tends to form more compound III and is catalytically slower than HRP during the oxidation of phenol.  相似文献   

7.
Chloroperoxidase (CPO) catalyzes the oxidation of various substrates with molecular oxygen as the primary oxidant, in the presence of dihydroxyfumaric acid (DHF) as a sacrificial reductant. For example, indole is oxidized to 2-oxindole with up to 77% selectivity and thioanisole to the corresponding R-sulfoxide (e.e. >99%). To our knowledge, these are the first examples of (enantio)selective aerobic oxidations catalyzed by peroxidases. A mechanism is proposed which involves initial formation of hydrogen peroxide via autoxidation of DHF. CPO subsequently uses the hydrogen peroxide for the selective oxidation of the substrate, via an oxygen transfer mechanism. In contrast, horseradish proxidase (HRP) primarily catalyzes the oxidation of DHF via a classical peroxidase mechanism and oxidations of added substrates are aselective.  相似文献   

8.
A study of the indole-3-acetate reaction with horse-radish peroxidase, in the absence or presence of hydrogen peroxide, has been performed, employing rapid scan and conventional spectrophotometry. We present here the first clear spectral evidence, obtained on the millisecond time scale, indicating that at pH 5.0 and for high [enzyme/substrate] ratios peroxidase compound III is formed. Most, if not all, of the compound III is formed by oxygenation of the ferrous peroxidase. There is an inhibitory effect of superoxide dismutase and histidine on compound III formation which indicates the involvement of the active oxygen species superoxide and singlet oxygen. It is concluded that the oxidation of indole-3-acetate by horseradish peroxidase at pH 5.0 proceeds through compound III formation to the catalytically inactive forms P-670 and P-630. A reaction path in which the enzyme is directly reduced by indole-3-acetate might be involved as an initiation step. Rapid scan spectral data, which indicate differences in the formation and decay of enzyme intermediate compounds at pH 7.0, in comparison with those observed at pH 5.0, are also presented. At pH 7.0 compound II is a key intermediate in oxidation--peroxidation of substrate. Mechanisms of reactions consistent with the experimental data are proposed and discussed.  相似文献   

9.
Peroxide compounds of manganese protoporphyrin IX and its complexes with apo-horseradish peroxidase and apocytochrome-c peroxidase were characterized by electronic absorption and electron paramagnetic resonance spectroscopies. An intermediate formed upon titration of Mn(III)-horseradish peroxidase with hydrogen peroxide exhibited a new electron paramagnetic resonance absorption at g = 5.23 with a definite six-lined 55Mn hyperfine (AMn = 8.2 mT). Neither a porphyrin pi-cation radical nor any other radical in the apoprotein moiety could be observed. The reduced form of Mn-horseradish peroxidase, Mn(II)-horseradish peroxidase, reacted with a stoichiometric amount of hydrogen peroxide to form a peroxide compound whose electronic absorption spectrum was identical with that formed from Mn(III)-horseradish peroxidase. The electronic state of the peroxide compound of manganese horseradish peroxidase was thus concluded to be Mn(IV), S = 3/2. Mn(III)-cytochrome-c peroxidase reacted with stoichiometry quantities of hydrogen peroxide to form a catalytically active intermediate. The electronic absorption spectrum was very similar to that of a higher oxidation state of manganese porphyrin, Mn(V). Since the peroxide compound of manganese cytochrome-c peroxidase retained two oxidizing equivalents per mol of the enzyme (Yonetani, T. and Asakura, T. (1969) J. Biol. Chem. 244, 4580-4588), this peroxide compound might contain an Mn(V) center.  相似文献   

10.
Titration of guaiacol by hydrogen peroxide in the presence of a catalytic amount of horseradish peroxidase shows that the reduction of hydrogen peroxide proceeds by the abstraction of two electrons from a guaiacol molecule. In the same way, it can be demonstrated that 0.5 mol of guaiacol can reduce, at low temperature, 1 mol of peroxidase compound I to compound II. Moreover, the reaction between equal amounts of compound I and guaiacol at low temperature produces the native enzyme. A reaction scheme is proposed which postulates that two electrons are transferred from guaiacol to compound I giving ferriperoxidase and oxidized guaiacol with the intermediary formation of compound II. The direct two-electron transfer from guaiacol to compound I without a dismutation of product free radicals must be considered as an exception to the general mechanism involving a single-electron transfer.  相似文献   

11.
The electronic characteristics of some hydrogen donor substrate (phenol and aniline derivatives) for peroxidase reaction were calculated with the aid of the CNDO/2 and other methods. These results were compared with the experimental data concerning the rate of oxidation of these compounds by peroxidase and hydrogen peroxide. No simple relationship between the total or frontier electron densities on the oxygen or nitrogen atoms, or the lowest unoccupied orbital energies, and the rate of oxidation was found. It was, however, found that the logarithm of the rate of oxidation for the compounds studied correlates linearly with the highest occupied orbital energies. Based on these results, the mechanism of electron transfer from the substrate to compound II is discussed.  相似文献   

12.
The reaction of prostaglandin H synthase with prostaglandin G2, the physiological substrate for the peroxidase reaction, was examined by rapid reaction techniques at 1 degree C. Two spectral intermediates were observed and assigned to higher oxidation states of the enzymes. Intermediate I was formed within 20 ms in a bimolecular reaction between the enzyme and prostaglandin G2 with k1 = 1.4 x 10(7) M-1 s-1. From the resemblance to compound I of horseradish peroxidase, the structure of intermediate I was assigned to [(protoporphyrin IX)+.FeIVO]. Between 10 ms and 170 ms intermediate II was formed from intermediate I in a monomolecular reaction with k2 = 65 s-1. Intermediate II, spectrally very similar to compound II of horseradish peroxidase or complex ES of cytochrome-c peroxidase, was assigned to a two-electron oxidized state [(protoporphyrin IX)FeIVO] Tyr+. which was formed by an intramolecular electron transfer from tyrosine to the porphyrin-pi-cation radical of intermediate I. A reaction scheme for prostaglandin H synthase is proposed where the tyrosyl radical of intermediate II activates the cyclooxygenase reaction.  相似文献   

13.
Catalase is a highly conserved heme-containing antioxidant enzyme known for its ability to degrade hydrogen peroxide into water and oxygen. In low concentrations of hydrogen peroxide, the enzyme also exhibits peroxidase activity. We report that mammalian catalase also possesses oxidase activity. This activity, which is detected in purified catalases, cell lysates, and intact cells, requires oxygen and utilizes electron donor substrates in the absence of hydrogen peroxide or any added cofactors. Using purified bovine catalase and 10-acetyl-3,7-dihydroxyphenoxazine as the substrate, the oxidase activity was found to be temperature-dependent and displays a pH optimum of 7-9. The Km for the substrate is 2.4 x 10(-4) m, and Vmax is 4.7 x 10(-5) m/s. Endogenous substrates, including the tryptophan precursor indole, the neurotransmitter precursor beta-phenylethylamine, and a variety of peroxidase and laccase substrates, as well as carcinogenic benzidines, were found to be oxidized by catalase or to inhibit this activity. Several dietary plant micronutrients that inhibit carcinogenesis, including indole-3-carbinol, indole-3-carboxaldehyde, ferulic acid, vanillic acid, and epigallocatechin-3-gallate, were effective inhibitors of the activity of catalase oxidase. Difference spectroscopy revealed that catalase oxidase/substrate interactions involve the heme-iron; the resulting spectra show time-dependent decreases in the ferric heme of the enzyme with corresponding increases in the formation of an oxyferryl intermediate, potentially reflecting a compound II-like intermediate. These data suggest a mechanism of oxidase activity involving the formation of an oxygen-bound, substrate-facilitated reductive intermediate. Our results describe a novel function for catalase potentially important in metabolism of endogenous substrates and in the action of carcinogens and chemopreventative agents.  相似文献   

14.
The kinetics of horseradish peroxidase (EC 1.11.1.7)-catalyzed oxidation of o-dianisidine by hydrogen peroxide in the presence of thiourea were studied. At the first, fast step of this process thiourea acts as a competitive reversible inhibitor with respect to o-dianisidine (Ki = 0.22 mM). The formation of a thiourea-peroxidase complex was determined by the increase in the absorbance at A495 and A638 of the enzyme. The dissociation constant for the peroxidase-thiourea complex is equal to 2.0-2.7 mM. Thiourea is not a specific substrate of peroxidase during the oxidation reaction by H2O2, but is an oxidase substrate (although not a very active one) of peroxidase. The irreversible inactivation of the enzyme during its incubation with thiourea was studied. The first-order inactivation rate constant (kin) was shown to increase with a fall in the enzyme concentration. The curve of the dependence of kin on the initial concentration of thiourea shows a maximum at 5-7 mM. The enzyme inactivation is due to its modification by intermediate free radical products of thiourea oxidation. The inhibitors of the free radical reactions (o-dianisidine) protect the enzyme against inactivation. The degree of inactivation depends on concentrations and ratio of thiourea and peroxidase. A possible mechanism of peroxidase interaction with thiourea is discussed.  相似文献   

15.
Oxidation of para substituted phenols by horseradish peroxidase compound II (HRP-II) and lactoperoxidase compound II (LPO-II) were studied using stopped flow technique. Apparent second order rate constants (kapp) of the reactions were determined. The kinetics of oxidation of phenols by HRP-II and LPO-II have been compared with the oxidation potentials of the substrates. Reorganization energies of electron-transfer of phenols to the enzymes were estimated from the variation of second order rate constants with the thermodynamic driving force.  相似文献   

16.
The reactions of the NAD radical (NAD.) with ferric horseradish peroxidase and with compounds I and II were investigated by pulse radiolysis. NAD. reacted with the ferric enzyme and with compound I to form the ferrous enzyme and compound II with second-order rate constants of 8 X 10(8) and 1.5 X 10(8) M-1 s-1, respectively, at pH 7.0. In contrast, no reaction of NAD. with native compound II at pH 10.0 nor with diacetyldeutero-compound II at pH 5.0-8.0 could be detected. Other reducing species generated by pulse radiolysis, such as hydrated electron (eaq-), superoxide anion (O2-), and benzoate anion radical, could not reduce compound II of the enzyme to the ferric state, although the methylviologen radical reduced it. The results are discussed in relation to the mechanism of catalysis of the one-electron oxidation of substrates by peroxidase.  相似文献   

17.
The highly sensitive, convenient fluorescence assay, based on the oxidation of nonfluorescent 10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red) to highly fluorescent resorufin, is becoming increasingly popular for hydrogen peroxide quantitation. Yet, the intricacies of the horseradish peroxidase-catalyzed oxidation of the reductant substrate Amplex Red by hydrogen peroxide and the resulting resorufin could complicate the assay design and data interpretation. In particular, substrate inhibition and enzyme inactivation at higher hydrogen peroxide concentrations were known to affect the enzyme kinetics and end-point fluorescence. In addition, here we report the spontaneous transformation of resorufin to less or nonfluorescent product(s) in the absence of hydrogen peroxide and horseradish peroxidase. This spontaneous decay of resorufin fluorescence is most prominent in the pH range 6.2-7.7, likely due to general base-catalyzed de-N-acetylation and polymerization of resorufin. From a practical point of view, precautions for properly designing assays for hydrogen peroxide or characterizing hydrogen peroxide-generating systems are discussed based on the spontaneous transformation of resorufin to less fluorescent compound(s), substrate inhibition and enzyme inactivation at higher (>100 microM) hydrogen peroxide concentrations, and enzymatic oxidation of resorufin to nonfluorescent resazurin.  相似文献   

18.
Based on kinetic evidence, it has been shown for the first time that the mode of binding of aromatic donor molecules is similar in horseradish peroxidase and lactoperoxidase; also that the nature of the heme plays an important role in the reaction with hydrogen peroxide, and has no effect on the reaction of the intermediate compound II with aromatic substrates.  相似文献   

19.
Transient kinetic analysis of biphasic, single turnover data for the reaction of 2,2'-azino-bis[3-ethylbenzthiazoline-6-sulfonic acid] (ABTS) with horseradish peroxidase (HRPC) compound II demonstrated preequilibrium binding of ABTS (k(+5) = 7.82 x 10(4) M(-)(1) s(-)(1)) prior to rate-limiting electron transfer (k(+6) = 42.1 s(-)(1)). These data were obtained using a stopped-flow method, which included ascorbate in the reaction medium to maintain a low steady-state concentration of ABTS (pseudo-first-order conditions) and to minimize absorbance changes in the Soret region due to the accumulation of ABTS cation radicals. A steady-state kinetic analysis of the reaction confirmed that the reduction of HRPC compound II by this substrate is rate-limiting in the complete peroxidase cycle. The reaction of HRPC with o-diphenols has been investigated using a chronometric method that also included ascorbate in the assay medium to minimize the effects of nonenzymic reactions involving phenol-derived radical products. This enabled the initial rates of o-diphenol oxidation at different hydrogen peroxide and o-diphenol concentrations to be determined from the lag period induced by the presence of ascorbate. The kinetic analysis resolved the reaction of HRPC compound II with o-diphenols into two steps, initial formation of an enzyme-substrate complex followed by electron transfer from the substrate to the heme. With o-diphenols that are rapidly oxidized, the heterolytic cleavage of the O-O bond of the heme-bound hydrogen peroxide (k(+2) = 2.17 x 10(3) s(-)(1)) is rate-limiting. The size and hydrophobicity of the o-diphenol substrates are correlated with their rate of binding to HRPC, while the electron density at the C-4 hydroxyl group predominantly influences the rate of electron transfer to the heme.  相似文献   

20.
J Sakurada  R Sekiguchi  K Sato  T Hosoya 《Biochemistry》1990,29(17):4093-4098
The second-order rate constant (k4) for the oxidation of a series of aromatic donor molecules (monosubstituted phenols and anilines) by horseradish peroxidase (HRP) compound II was examined with a stopped-flow apparatus. The electronic states of these substrates were calculated by an ab initio molecular orbital method. It was found that in both phenols and anilines log k4 values correlate well with the highest occupied molecular orbital (HOMO) energy level and the lowest unoccupied molecular orbital (LUMO) energy level, but not with the net charge or frontier electron density on atoms of these molecules. The HOMO and LUMO energy levels of phenols and anilines further showed linear relationships with Hammett's sigma values with negative slopes. Similar results were obtained in the oxidation of substrates by HRP compound I, except that the rate of reaction was much higher than in the case of HRP compound II. In addition, the rates of oxidation of phenols by compound I or II were found to be about 1000 times higher than those of anilines with similar HOMO energy levels. On the basis of these results, the mechanism of electron transfer from the substrate to the heme iron of HRP compound II is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号