首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
以青藜2号为原料,采用谷氨酸钠(monosodium glutamate,MSG)和抗坏血酸(ascorbic acid,ASA)协同处理藜麦萌发富集γ-氨基丁酸(γ-amniobutyric acid,GABA),探讨了浸泡和萌发因素对藜麦GABA含量的影响并优化了最佳富集工艺参数,并对萌发藜麦胆酸盐吸附能力进行了研究。结果表明:MSG和ASA浓度分别为2和6 mg/mL时有利于藜麦GABA含量的提高,以该浓度组合为基础通过正交试验优化的藜麦胁迫萌发富集GABA最佳培养条件为浸泡时间6 h、浸泡温度25 ℃、萌发时间48 h、萌发温度25 ℃,在此条件下GABA含量达到1.613 mg/g,分别为藜麦种子和对照组去离子水处理萌发藜麦GABA含量的3.07和2.26倍。胆酸盐吸附试验显示,萌发前后藜麦对牛磺胆酸盐和甘氨胆酸盐结合能力均较强,其中以藜麦原粉最高(177.68和179.53 mg/g),其次为去离子水萌发藜麦(150.25和163.12 mg/g)和胁迫萌发藜麦(125.17和144.92 mg/g),萌发处理后藜麦胆酸盐结合能力有下降趋势。本研究可为藜麦萌发研究及富GABA食品的开发提供一定的理论依据。  相似文献   

2.
为探究等离子体联合盐胁迫对红小豆萌发后γ-氨基丁酸(γ-Aminobutyric acid,GABA)含量的富集作用及效果。本实验以红小豆为原料,考察大气冷等离子电压、频率、时间处理种子对其发芽过程中GABA含量的影响,同时采用L-谷氨酸(L-Glu)联合盐胁迫的发芽方法,通过考察单因素(发芽时间、CaCl2、L-Glu和NaCl浓度)对GABA富集量的影响及响应面优化试验确定该法富集GABA最佳工艺。结果表明,大气冷等离子体技术处理种子对其萌发富集γ-氨基丁酸有促进作用,电压90 kV、频率120 Hz、时间20 min条件下大气冷等离子体处理效果较好。在发芽时间为58 h、CaCl2浓度为4.4 mmol/L、L-Glu浓度为3.2 mg/mL、NaCl浓度为66 mmol/L时,发芽红小豆GABA含量为160.23±2.91 mg/100 g,是未发芽红小豆的7.12倍。该方法高效可靠且成本低,为富含GABA食品的工厂化生产提供技术参考。  相似文献   

3.
为获得高含量γ-氨基丁酸(GABA)的发芽糙米,对盐胁迫下发芽糙米实施脉冲强光处理。在单因素实验基础上,采用Box-Behnken响应面法优化脉冲强光对盐胁迫下发芽糙米积累γ-氨基丁酸工艺条件。实验结果表明:谷氨酸钠浓度为2.01mg/m L、脉冲能量300J、脉冲距离11cm、脉冲频次1次/s、脉冲时间31.80s以及发芽时间27.84h时能达到最佳的积累条件,此条件下验证实验的发芽糙米中GABA含量可达到181.5mg/100g。  相似文献   

4.
以东北大豆为原料,研究培养液组分对大豆发芽富集γ-氨基丁酸(γ-aminobutyric acid,GABA)的影响,利用响应面法优化了大豆发芽富集GABA的培养液组分,在此基础上对低盐胁迫下大豆发芽富集GABA的机理进行研究。结果表明:优化后有效的培养液组分为谷氨酸钠1.0 mg/mL、磷酸吡哆醛2.0 mmol/L、CaCl_2 2.0 mmol/L、NaCl 100 mmol/L,在此条件下,富集得到的发芽大豆中GABA含量较高,为(269.93±4.73)mg/100 g,比大豆发芽前提高了约10倍;盐胁迫下,发芽大豆谷氨酸脱羧酶(glutamate decarboxylase,GAD)活性和GABA含量随Na Cl浓度加大和胁迫时间延长而提高,同时大豆发芽期间GABA含量与其他指标之间相关性分析表明,盐胁迫下发芽大豆GABA含量与芽长、GAD活性、游离氨基酸和可溶性蛋白含量之间呈显著正相关,在低盐胁迫下,大豆发芽受到抑制,但促进了GAD活性的升高,游离氨基酸和可溶性蛋白质含量增加,富集产生了较多的GABA。  相似文献   

5.
采用在通气的培养液中添加外源Ca~(2+)培养的方式,研究了低氧联合NaCl胁迫下外源Ca~(2+)对发芽苦荞GABA富集的影响。低氧联合NaCl胁迫对苦荞的芽长有抑制作用,GAD活力和GABA的含量随着NaCl浓度的增大均呈先上升后下降的趋势,在10 mmol/L NaCl溶液处理时均达到最高值,分别是单纯低氧胁迫的1.65倍和1.10倍;在低氧联合NaCl胁迫的基础上添加低浓度的Ca~(2+)可缓解NaCl胁迫对苦荞芽长的抑制作用,添加3 mmol/L Ca~(2+)处理可使GAD活力和GABA的富集量达到最大,分别为91.44 U/g FW和492.31μg/g DW,分别是低氧联合NaCl胁迫的1.12倍和1.16倍;低氧联合NaCl胁迫下添加Ca~(2+)螯合剂和通道阻断剂后发芽苦荞芽长显著降低,GAD活力显著下降,GABA富集量减少。外源Ca~(2+)可降低低氧联合NaCl胁迫对苦荞芽长的抑制作用,并可通过提升GAD活力,增强发芽苦荞GABA的富集。  相似文献   

6.
发芽蚕豆富集γ-氨基丁酸的培养液组分优化   总被引:1,自引:1,他引:0  
以蚕豆为试材,研究谷氨酸钠(MSG)、CaCl2、和VB6对发芽蚕豆谷氨酸脱羧酶(GAD)及γ-氨基丁酸(GABA)的影响,采用Box-behnken设计对发芽蚕豆富集GABA的培养液组分进行了优化,并对发芽蚕豆富集GABA的二次回归模型进行分析。结果表明,低氧联合盐胁迫下,MSG、CaCl2和VB6对发芽蚕豆GAD及GABA的影响均达到显著水平(P<0.005)。经过回归分析建立了GABA含量对培养液组分的二次回归模型,回归方程的决定系数达到0.976,说明方程能很好的预测GABA富集含量的变化。蚕豆富集GABA的最适培养液组分为MSG 1.1 mg/mL、CaCl2 6.1 mmol/L、VB6 72μmol/L,此时,GABA富集量达到(1.98±0.09)mg/g DW,为对照[(1.08±0.01)mg/g DW]的1.83倍。  相似文献   

7.
为筛选富含γ-氨基丁酸(γ-aminobutyric acid,GABA)的芸豆品种,建立高GABA富集能力芸豆品种的筛选方法,选取18个芸豆品种作为实验材料。经湿热处理选择富含GABA的芸豆品种,并对与GABA合成相关的指标作主成分分析、相关性分析及线性回归。结果显示,湿热处理后有三个芸豆品种GABA含量大于120 mg/100 g;主成分分析综合得分印证了筛选结果;芸豆GABA积累量与谷氨酸脱羧酶(glutamate decarboxylase,GAD)活性呈极显著正相关(P<0.01),而与亚精胺(Spermidine,Spd)含量呈显著负相关(P<0.05);芸豆中GAD酶作为关键性限速酶参与GABA的合成。因此,湿热处理可显著提高芸豆中GABA的含量,GAD活性测定可用于筛选高GABA富集能力的芸豆品种。  相似文献   

8.
γ-氨基丁酸(GABA)是一种功能性成分,在食品中有着广阔的利用前景。该实验以豇豆为原料,研究了发芽温度和时间对豇豆发芽率和GABA含量的影响,同时分析了不同浸泡液对萌芽豇豆中GABA含量的影响。结果表明:在20~30℃下萌发24h,豇豆发芽率高且出芽整齐。在30℃下,萌发24h的豇豆GABA含量高达815.21μg/g,较萌发前高158.32μg/g。在浸泡液pH为4时,萌芽豇豆GABA含量可达2330.90μg/g,为萌发前豇豆GABA含量的4倍左右。Ca2+浓度在0.1mmol/L时,GABA含量可高达886.24μg/g,继续增加Ca2+浓度,则GABA含量降低。磷酸吡哆醛(PLP)浸泡液浓度在4mmol/L时,萌芽豇豆GABA的含量可达843.14μg/g,较萌发前提高了20%左右。VB6浸泡液在1mmol/L时,萌芽豇豆GABA含量为966.61μg/g,是萌芽前豇豆GABA含量的1.5倍左右。NaCl和L-谷氨酸浸泡液不能起到促进萌发豇豆富集GABA的作用。可见通过控制发芽时间和温度以及选择合适的浸泡液培养,能有效调节豇豆富集GABA。  相似文献   

9.
以青稞麸皮为原料,利用内源谷氨酸脱羧酶(GAD)和外源添加谷氨酸钠及磷酸吡哆醛(PLP)富集γ-氨基丁酸(GABA)。在比较不同品种GABA富集能力差异的基础上,采用以pH值、料液比、外源谷氨酸钠和磷酸吡哆醛浓度、反应温度和时间为变量的单因素实验和正交试验方法,得到GABA富集的优化工艺条件。结合青稞麸皮分级制备GABA的比较试验结果,建立GABA的高效制备方法:麸皮脱皮率4.23%~6.43%,料液比140∶1(g/L),反应时间12 h,反应温度35 ℃,添加谷氨酸钠浓度为8 mmol/L,PLP浓度为18 μmol/L。利用该方法获得的GABA最高产量为19.57 mmol/L,外源底物转化率在97%以上。  相似文献   

10.
氨基丁酸(γ-Aminobutyric Acid,GABA)是一种具有众多生理功能的活性物质,在谷物中含量普遍较低,但通过胁迫处理可以得到有效富集。该研究以荞麦为原料,重点研究了柠檬酸和亚精胺联合处理对荞麦芽GABA含量的影响,并初步解析了其作用机制。响应面优化试验发现,2 mmol/L柠檬酸和0.1 mmol/L亚精胺联合处理更有助于荞麦发芽过程中GABA的积累,含量可达12.23 mg/g,比单独处理分别提高了1.11和1.27倍。同时,分别考察联合处理下谷氨酸脱羧酶(GAD)、二胺氧化酶(DAO)和多胺氧化酶(PAO)的活力以解析GABA含量变化的原因。结果表明处理后三种关键酶的活力分别为1 204 nmol/(min.g)、18.92 U/g和3.58 U/g,较未处理和单独处理的组别有显著提高,研究结果说明柠檬酸和亚精胺联合处理可显著提高荞麦芽GABA含量,这与GABA合成途径中关键酶GAD、DAO和PAO的酶活力提高有关,而且联合处理具有一定的协同作用。该研究为富集谷物GABA提供了思路和理论依据。  相似文献   

11.
研究不同时间及不同谷氨酸钠浓度处理对茶鲜叶富集GABA效果的影响.结果表明:经厌氧处理8 h后,茶叶中GABA含量达1.325 mg/g,为未处理茶叶的6.7倍;先经2.5%谷氨酸钠浸泡4 h后,再厌氧处理8 h,茶叶中GABA得到进一步富集,其含量高达2.501 mg/g,是未经处理茶叶的12.6倍.  相似文献   

12.
盐胁迫富集发芽大豆γ - 氨基丁酸的工艺优化   总被引:1,自引:0,他引:1  
在单因素试验基础上,应用响应面试验研究氯化钠浓度、培养时间和培养温度对大豆发芽富集γ-氨基丁酸(γ-aminobutyric acid,GABA)的影响,目的是优化盐胁迫条件下发芽大豆富集GABA的最佳培养条件。研究结果表明:豆芽在盐胁迫条件下富集GABA的最优条件是氯化钠浓度133.5mmol/L、培养时间5.5d、培养温度33.3℃,在此条件预测的最高GABA富集量为1205.24μg/g。方差分析和验证实验显示,模型可准确的预测盐胁迫条件下大豆发芽过程中GABA的富集。  相似文献   

13.
采用浸渍处理方法,对鲜切南瓜富集γ-氨基丁酸(γ-aminobutyric acid, GABA)的工艺和浸渍液组分进行研究。在单因素试验的基础上,通过正交试验优化了鲜切南瓜富集GABA的工艺条件,采用响应面试验设计对影响鲜切南瓜GABA富集的浸渍液组分进行了优化。结果得出,鲜切南瓜富集GABA的最佳工艺为浸渍时间4 h、浸渍温度40℃、浸渍液pH 5.8。极差分析表明,浸渍温度是最主要的影响因素,浸渍时间次之,最后是浸渍液pH。在最佳浸渍工艺下,鲜切南瓜中GABA的含量为0.291 mg/g,是原料中GABA含量的5.43倍; Box-Behnken设计优化的最优浸渍液组分为CaCl_2浓度3.35 mmol/L、谷氨酸钠(MSG)质量浓度10.24 mg/mL和VB_6浓度0.37 mmol/mL,在此条件下鲜切南瓜中GABA含量为0.569 mg/g,是原料的10.62倍,说明浸渍液中添加了外源物质能显著提高鲜切南瓜中GABA含量。方差分析表明,所建的回归模型显著,能很好地预测鲜切南瓜中GABA含量的变化。  相似文献   

14.
朱云辉  郭元新 《食品科学》2015,36(19):96-100
为优化盐胁迫条件下发芽苦荞富集γ-氨基丁酸(γ-aminobutyric acid,GABA)的最优培养条件,在单因素试验的基础上,采用响应面法探讨NaCl浓度、发芽时间和发芽温度对发芽苦荞中GABA含量的影响。结果表明:发芽苦荞在盐胁迫条件下富集GABA的最佳培养条件为:NaCl浓度34 mmol/L、发芽时间5 d、发芽温度31℃,在此条件下发芽苦荞中GABA富集量为250.06μg/g(以干质量计)。方差分析及验证实验显示,模型具有极显著的可靠性和拟合度(R~2=0.9611),可准确预测盐胁迫条件下苦荞发芽过程中GABA的富集量。  相似文献   

15.
以浸渍处理的pH、温度以及谷氨酸钠(MSG)体积浓度为考察因素,γ-氨基丁酸(γ-aminobutyric acid,简称GABA)含量为响应指标,在单因素实验的基础上,进行3因素3水平的中心复合设计,并采用响应面分析法优化浸渍处理马铃薯富集GABA的工艺。得出最佳浸渍条件为:pH为5.5、处理温度为33.3℃、MSG的体积浓度为12mg/mL,处理后马铃薯中GABA的富集量可达到0.929mg/g鲜重,是处理前马铃薯中GABA含量0.357mg/g鲜重的将近3倍。  相似文献   

16.
有机酸和茶树油对发芽糙米生理指标的影响   总被引:1,自引:0,他引:1  
以“赣晚籼923”籼米为材料,在发芽过程中添加茶树油和(或)有机酸如抗坏血酸、柠檬酸、乳酸钙进行浸泡,比较茶树油和(或)有机酸对发芽过程中糙米表面菌落总数、γ-氨基丁酸(GABA)含量,以及糙米呼吸强度、还原糖含量的影响。结果表明:由4.0g/L抗坏血酸、2.0g/L柠檬酸、3.0g/L乳酸钙组成的有机酸溶液能促进糙米呼吸和GABA积累,加速淀粉降解转化为还原糖;茶树油(4.5g/L)则对糙米呼吸、淀粉降解和GABA富集有一定的抑制作用;此外,茶树油和有机酸溶液对抑制糙米发芽过程中细菌的滋生具有协同增效作用。  相似文献   

17.
以蚕豆(启豆2号)为原料,研究了低氧联合NaCl胁迫下培养条件对γ-氨基丁酸(GABA)富集的影响。结果显示:非胁迫培养时间、培养pH和胁迫培养时间显著影响发芽蚕豆GABA积累。蚕豆发芽富集GABA最佳培养条件是非胁迫培养1.5 d、培养液pH 3.5和低氧联合NaCl胁迫4 d,在此条件下其GABA含量可达1.06mg/g DW,为原料蚕豆的7.57倍。  相似文献   

18.
以马铃薯为试材,采用-24、-68℃2种冷胁迫处理方法,研究不同冻结方式和解冻方式对马铃薯中γ-氨基丁酸(γ-amino butyric acid,GABA)含量的影响,接着采用先浸泡后冷冻的方法,对影响冷冻马铃薯中GABA含量的浸泡液组分进行研究并优化其最适浓度。结果表明,-24℃冷冻的马铃薯中GABA含量均高于-68℃,4种解冻方式中微波解冻下GABA含量最高,因此,冷胁迫处理马铃薯富集GABA的适宜条件为-24℃冷冻2 h,微波解冻2 min。4种浸泡液组分中谷氨酸钠(MSG)、Ca Cl2和Na Cl均有效提高马铃薯中GABA含量,VB6对提高马铃薯中GABA含量影响不显著;Box-Behnken试验结果显示,最优浸泡液组分为MSG浓度12.5 mg/m L、Ca Cl2浓度2.7 mmol/L和Na Cl浓度83.1 mmol/L,在此条件下马铃薯中GABA含量为51.37 mg/100 g,是原料的5.61倍,说明优化后的浸泡液组分能显著提高马铃薯中GABA含量。方差分析表明,所建的回归模型显著,能很好地预测马铃薯中GABA含量的变化。  相似文献   

19.
为缩短糙米的发芽周期、提高发芽糙米的γ-氨基丁酸(γ-aminobutyric acid,GABA)含量,研究了通气胁迫、金属离子胁迫以及双重胁迫处理对糙米(镇糯19号)发芽效果(GABA含量、发芽率和芽长)的影响。试验结果表明:全程通气胁迫处理能显著加快糙米萌发速度并提高发芽后期糙米中GABA的含量,但是会导致芽体过长;发芽21h后进行通气胁迫处理(9h)能在提高GABA含量的同时,有效控制芽长在0.2cm左右;采用钙离子(Ca~(2+))或铝离子(Al~(3+))进行胁迫萌发能大幅度提高发芽糙米中GABA的含量,当Ca~(2+)浓度为35 mmol/L时,GABA增长率达到44.3%;双重胁迫萌发的最佳工艺条件为:糙米在35mmol/L的Ca~(2+)溶液中浸泡发芽21h后以1.5L/min的通气量通气9h,共发芽30h;在该条件下,镇糯19号胁迫萌发后γ-氨基丁酸含量达到28.18mg/100g,比正常发芽36h的样品提高了64.42%,发芽率提高了2.65%。可见,通气和金属离子双重胁迫可显著提高GABA含量并缩短发芽周期。  相似文献   

20.
探究萌育时间、萌育温度、氯化钙、谷氨酸钠等因素以及冻融处理对芝麻萌育过程中γ-氨基丁酸含量的影响。结果表明,随着萌育时间的延长,γ-氨基丁酸含量显著提升,萌育3.0 d时,γ-氨基丁酸含量增至7.19 mg/g;30℃时萌育γ-氨基丁酸含量增至最大值;萌育过程中添加氯化钙溶液、谷氨酸钠溶液均有利于γ-氨基丁酸的转化;冻融处理对于转化γ-氨基丁酸具有显著作用。使用萌育1 d的芝麻,采用响应面试验得出最优的γ-氨基丁酸转化条件为:冷冻胁迫18 h,解冻温度32℃,解冻时间15 h,在该条件下芝麻中γ-氨基丁酸含量为10.02 mg/g,比未经冻融处理的芝麻γ-氨基丁酸含量提高3.02倍,比对照组γ-氨基丁酸含量提高4.06倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号