首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four lines of evidence indicate that a specific high affinity binding site on the surface of Leishmania donovani promastigotes mediates rapid internalization and degradation of hemoglobin. 1) Binding and uptake of 125I-hemoglobin by Leishmania followed saturation kinetics and were competed by unlabeled hemoglobin but not by globin or hemin or other heme- or iron-containing proteins. 2) Immunogold labeling studies revealed that, at 4 degreesC, hemoglobin binding was localized in the flagellar pocket of the promastigotes. Indirect immunofluorescence assays showed that, at 37 degreesC, the bound hemoglobin in such cells entered an endocytic compartment within 2 min and dispersed throughout the cell body by 15 min. 3) After incubation with hemoglobin-gold conjugates at 25 degreesC or 37 degreesC, the particles accumulated in discrete intracellular vesicles. 4) A single biotinylated protein of 46 kDa was revealed when solubilized membranes from surface biotinylated intact Leishmania adsorbed by hemoglobin-agarose beads were subjected to SDS-polyacrylamide gel electrophoresis and Western blotting with avidin-horseradish peroxidase. Considered together, these data indicate that this 46-kDa protein on the cell surface of L. donovani promastigotes mediates the binding of hemoglobin and its rapid internalization through a vesicular pathway characteristic of receptor-mediated endocytosis.  相似文献   

2.
BACKGROUND: The aim of this study was to identify the proteolytic activity which triggers the transformation of human alpha2-macroglobulin (alpha2-M) in seminal fluid and its binding to its receptor. METHODS: Measurement of the concentrations of total and transformed alpha2-M in seminal fluid was accomplished by ELISA. Zymography of seminal plasma was performed in SDS-polyacrylamide gels containing casein as proteolytic substrate. Rate electrophoresis, SDS-PAGE, and Western blotting were applied to study the complex formation of prostate-specific antigen (PSA) with alpha-M. Ligand-binding analysis of sperm cells was performed using [125I] labeled proteins. Detection of receptor on sperm cells was achieved by immunofluorescence. RESULTS: The mean concentration of total alpha2-M in a random collection of seminal plasma was 4.6 microg/ml. On average, between 33-98% of the inhibitor was found to be transformed. Zymography of seminal plasma revealed a proteolytic activity which is associated with a 33-kDa protein identified as PSA. Its proteolytic activity could be inhibited by 0.2-M. Both purified PSA and seminal plasma were capable of transforming native alpha2-M. Binding of PSA to alpha2-M triggers the exposition of receptor binding sites in the inhibitor molecule, which causes binding of the complex to alpha2-M-R/LRP identified on spermatozoa. CONCLUSIONS: PSA, the main proteinase in seminal fluid, is responsible for the transformation of alpha2-M and for its binding to alpha2-M-R/LRP present on spermatozoa. The binding of alpha2-M-PSA complexes to the spermatozoa receptor may exert an impact on normal sperm-cell functions.  相似文献   

3.
Transferrin (Tf) is required for proliferation of most cells, because cellular iron uptake is mainly mediated by binding of Tf to its specific cell surface receptors (TfR). The acute-phase protein alpha 1-antitrypsin (alpha 1-AT) completely inhibits binding of diferric Tf to TfRs on human skin fibroblasts in a dose-dependent fashion. The inhibition is competitive as proved in equilibrium saturation binding and kinetic studies. In saturation binding experiments alpha 1-AT apparently increased the dissociation constant (KD), but did not change the maximal density of binding sites (Bmax). As shown in kinetic studies, this reduction of the affinity of Tf to its receptor caused by alpha 1-AT was due to a decrease of the association rate constant (k + 1), whereas the dissociation rate constant (k - 1) remained unchanged. Furthermore, alpha 1-AT almost completely prevented internalization of the Tf-TfR complex. These interactions demonstrated biological implication, as alpha 1-AT reduced the proliferation of human fibroblasts up to maximal 30% of control. The inhibitory potency of alpha 1-AT was already seen in physiologic concentrations; the maximal effect, however, was achieved at concentrations above the normal range, which are attained in the course of inflammation and infection. Therefore, we suppose that alpha 1-AT as an endogenous factor modulates the complex mechanism of fibrogenesis not only by its known antiproteolytic function but also by inhibiting the proliferation of fibroblasts.  相似文献   

4.
Atrial natriuretic peptide (ANP) stimulates aqueous humor formation in primates, but the membrane-bound receptors which mediate this effect have not been well studied in the eye. Endocytosis of [125I]ANP bound to natriuretic peptide C receptors was characterized in fetal human nonpigmented ciliary epithelial (NPE) cells. [125I]ANP which bound to cells at 4 degreesC was detected in the cell interior after a temperature shift to 37 degreesC. Appearance of ligand within the cell peaked at 5 min, and then declined towards zero over 20 min. The endocytosis inhibitor phenylarsine oxide blocked the appearance of internalized ligand, whereas the lysosomotropic drug chloroquine had no effect on internalization but blocked subsequent loss of internalized ligand. Chloroquine also blocked the accumulation of degraded ligand in the extracellular medium. Treatment with phorbol 12-myristate, 13-acetate accelerated the loss of internalized ligand from cells and increased the accumulation of ligand in the extracellular medium. Ligand in the medium was also increased by dioctanoylglycerol but not by 4alpha phorbol didecanoate, an isomer which does not activate protein kinase C. The protein kinase inhibitors staurosporine and bisindolylymaleimide blocked the increase in ligand. Phorbol ester-stimulated loss of internalized ligand occurred in the presence of chloroquine. TCA precipitation of ligand in the extracellular medium showed that both degraded and undegraded [125I]ANP were present. However, in the presence of chloroquine only, undegraded ANP was detected in the medium, and phorbol esters stimulated its rate of appearance by approximately 2 fold. A similar stimulation occurred when cells containing internalized ligand, but stripped of membrane-bound ligand, were exposed to phorbol esters. The data suggest that ANP bound to natriuretic peptide C receptors on NPE cells is endocytosed, and that protein kinase C activates a non-lysosomal pathway for ANP retroendocytosis in these cells.  相似文献   

5.
Association of matrix metalloproteinases (MMPs) with the cell surface and with areas of cell-matrix contacts is critical for extracellular matrix degradation. Previously, we showed the surface association of pro-MMP-9 in human breast epithelial MCF10A cells. Here, we have characterized the binding parameters of pro-MMP-9 and show that the enzyme binds with high affinity (Kd approximately 22 nM) to MCF10A cells and other cell lines. Binding of pro-MMP-9 to MCF10A cells does not result in zymogen activation and is not followed by ligand internalization, even after complex formation with tissue inhibitor of metalloproteinase-1 (TIMP-1). A 190-kDa cell surface protein was identified by ligand blot analysis and affinity purification with immobilized pro-MMP-9. Microsequencing and immunoblot analysis revealed that the 190-kDa protein is the alpha2(IV) chain of collagen IV. Specific pro-MMP-9 surface binding was competed with purified alpha2(IV) and was significantly reduced after treatment of the cells with active MMP-9 before the binding assay since alpha2(IV) is hydrolyzed by MMP-9. A pro-MMP-9.TIMP-1 complex and MMP-9 bind to alpha2(IV), suggesting that neither the C-terminal nor the N-terminal domain of the enzyme is directly involved in alpha2(IV) binding. The closely related pro-MMP-2 exhibits a weaker affinity for alpha2(IV) compared with that of pro-MMP-9, suggesting that sites other than the gelatin-binding domain may be involved in the binding of alpha2(IV) to pro-MMP-9. Although pro-MMP-9 forms a complex with alpha2(IV), the proenzyme does not bind to triple-helical collagen IV. These studies suggest a unique interaction between pro-MMP-9 and alpha2(IV) that may play a role in targeting the zymogen to cell-matrix contacts and in the degradation of the collagen IV network.  相似文献   

6.
The binding isotherms of the divalent metal cations, Ca2+, Mg2+, and Zn2+, to the synthetic gamma-carboxyglutamic acid-containing neuroactive peptides, conantokin-G (con-G) and conantokin-T (con-T), have been determined by isothermal titration calorimetry (ITC) at 25 degreesC and pH 6.5. We have previously shown by potentiometric measurements that con-G contains 2-3 equivalent Ca2+ sites with an average Kd value of 2800 microM. With Mg2+ as the ligand, two separate exothermic sites are obtained by ITC, one of Kd = 46 microM and another of Kd = 311 microM. Much tighter binding of Zn2+ is observed for these latter two sites (Kd values = 0.2 microM and 1.1 microM), and a third considerably weaker binding site is observed, characterized by a Kd value of 286 microM and an endothermic enthalpy of binding. con-T possesses a single exothermic tight binding site for Ca2+, Mg2+, and Zn2+, with Kd values of 428 microM, 10.2 microM, and 0.5 microM, respectively. Again, in the case of con-T, a weak (Kd = 410 microM) endothermic binding site is observed for Zn2+. The binding of these cations to con-G and con-T result in an increase in the alpha-helical content of the peptides. However, this helix is somewhat destabilized in both cases by binding of Zn2+ to its weakest site. Since the differences observed in binding affinities of these three cations to the peptides are substantially greater than their comparative Kd values to malonate, we conclude that the structure of the peptide and, most likely, the steric and geometric properties imposed on the cation site as a result of peptide folding greatly influence the strength of the interaction of cations with con-G and con-T. Further, since the Zn2+ concentrations released in the synaptic cleft during excitatory synaptic activity are sufficiently high relative to the Kd of Zn2+ for con-G and con-T, this cation along with Mg2+, are most likely the most significant metal ion ligands of these peptides in neuronal cells.  相似文献   

7.
The role of alpha-tocopherol uptake system in human erythrocyte in the uptake of plasma alpha-tocopherol has been suggested. However no information is available on alpha-tocopherol uptake activity of human erythrocytes in the presence of high levels of D-glucose which is known to lead to pathological alterations in different cells including human erythrocytes. Therefore, in order to examine the effect of D-glucose on the binding of alpha-tocopherol to human erythrocytes, the binding characteristics of alpha-tocopherol to these cells were established first. Binding of [3H]alpha-tocopherol to human erythrocytes was both saturable and specific. Scatchard analysis of alpha-tocopherol binding to these cells showed the presence of two independent classes of binding sites with widely different affinities. The high affinity binding sites had a dissociation constant (Kd1) of 90 nM with a binding capacity (n1) of 900 sites per cell, whereas the low affinity binding sites had a dissociation constant (Kd2) of 5.2 microM and a binding capacity (n2) of 105,400 sites per cell. Trypsin treatment abolished all the alpha-tocopherol binding activity. Competition for the binding of alpha-tocopherol to human erythrocytes was effective with other homologues of alpha-tocopherol (beta-tocopherol, gamma-tocopherol and delta-tocopherol) and their potency was almost equal to alpha-tocopherol itself. The order of preference was alpha-tocopherol > beta-tocopherol > or = gamma-tocopherol > or = delta-tocopherol. Incubation of human erythrocytes with various concentrations of D-glucose did not affect alpha-tocopherol uptake activity. Our data demonstrate the presence of an alpha-tocopherol uptake system in human erythrocytes and that the alpha-tocopherol uptake activity is not modulated by the presence of D-glucose.  相似文献   

8.
CD48 is a member of the Ig superfamily with a high degree of sequence homology to CD58 (LFA-3). In rodents, CD48 is the ligand for CD2 whereas in humans, CD58 is the ligand for CD2. Despite intensive efforts, no ligand for human CD48 has been convincingly demonstrated. We now show that a ligand for human CD48 is present on epithelial cells. The ligand was detected based on the ability of epithelial cells to bind both a decameric, soluble CD48 IgM fusion protein and monomeric CD48 immobilized on plastic dishes. mAbs raised to the ligand completely block binding of CD48 to all epithelial cells tested. We further show that the cell surface proteoglycan CD44 plays an auxiliary role in the binding of epithelial cells to CD48 and that this interaction involves the glycosaminoglycan binding site of CD44. No interaction of human CD48 with CD2 was detected. This is the first clear demonstration that human CD48 can function as an adhesion molecule and suggests a role for CD48 in lymphocyte epithelial cell interactions.  相似文献   

9.
2B4 is a cell surface glycoprotein related to CD2 and implicated in the regulation of natural killer and T lymphocyte function. A recombinant protein containing the extracellular region of mouse (m)2B4 attached to avidin-coated fluorescent beads bound to rodent cells, and binding was completely blocked by CD48 monoclonal antibodies (mAbs). Using surface plasmon resonance, we showed that purified soluble mCD48 bound m2B4 with a six- to ninefold higher affinity (Kd approximately 16 microM at 37 degreesC) than its other ligand, CD2. Human CD48 bound human 2B4 with a similar affinity (Kd approximately 8 microM). The finding of an additional ligand for CD48 provides an explanation for distinct functional effects observed on perturbing CD2 and CD48 with mAbs or by genetic manipulation.  相似文献   

10.
Using insect cells, we expressed large quantities of soluble human integrin alpha 3 beta 1 ectodomain heterodimers, in which cytoplasmic and transmembrane domains were replaced by Fos and Jun dimerization motifs. In direct ligand binding assays, soluble alpha 3 beta 1 specifically bound to laminin-5 and laminin-10, but not to laminin-1, laminin-2, fibronectin, various collagens, nidogen, thrombospondin, or complement factors C3 and C3b. Soluble alpha 3 beta1 integrin also bound to invasin, a bacterial surface protein, that mediates entry of Yersinia species into the eukaryotic host cell. Invasin completely displaced laminin-5 from the alpha 3 beta 1 integrin, suggesting sterically overlapping or identical binding sites. In the presence of 2 mM Mg2+, alpha 3 beta 1's binding affinity for invasin (Kd = 3.1 nM) was substantially greater than its affinity for laminin-5 (Kd > 600 nM). Upon addition of 1 mM Mn2+, or activating antibody 9EG7, binding affinity for both laminin-5 and invasin increased by about 10-fold, whereas the affinity decreased upon addition of 2 mM Ca2+. Thus, functional regulation of the purified soluble integrin alpha 3 beta 1 ectodomain heterodimer resembles that of wild-type membrane-anchored beta 1 integrins. The integrin alpha 3 subunit was entirely cleaved into disulfide-linked heavy and light chains, at a newly defined cleavage site located C-terminal of a tetrabasic RRRR motif. Within the alpha 3 light chain, all potential N-glycosylation sites bear N-linked mannose-rich carbohydrate chains, suggesting an important structural role of these sugar residues in the stalk-like region of the integrin heterodimer. In conclusion, studies of our recombinant alpha 3 beta 1 integrin have provided new insights into alpha 3 beta1 structure, ligand binding function, specificity, and regulation.  相似文献   

11.
12.
Cadmium (Cd) is reported to produce cardiotoxicity at doses and exposure conditions that cause no effect in kidney or liver. The purpose of the present investigation was to examine the cytotoxicity of Cd to neonatal rat cardiomyocytes in primary culture and to elucidate the transport characteristics of Cd in these cells at a nontoxic concentration. Cd concentrations of 0.1 microM and higher that are well tolerated by hepatocytes and renal cortical epithelial cells were toxic to the cardiomyocyte. The plot of initial uptake rate of Cd at various concentrations was nonlinear suggesting that, in addition to simple diffusion, other processes may also be involved. These processes required metabolic energy as pretreatment with dinitrophenol or sodium fluoride inhibited 58 and 59% of the Cd uptake, respectively. The uptake of Cd was also affected by the incubation temperature and lowering the temperature from 37 to 4 degreesC reduced Cd uptake over 30 min by 61%. Cd uptake required interaction with membrane sulfhydryl groups; pretreatment with p-chloromercuribenzenesulfonic acid or mercuric chloride reduced Cd uptake by 46 and 58%, respectively. Cd utilized the transport pathways for calcium (Ca), zinc (Zn), and copper (Cu). Coincubation with 1.26 mM Ca competitively inhibited Cd uptake by 77%. In the presence of Ca, 30 microM Zn or Cu further inhibited Cd accumulation competitively by as much as 63 and 32%, respectively. Cd could enter the cardiomyocytes through Ca channels and Ca channel blocker, verapamil, inhibited up to 76% of Cd uptake. From the above results it can be concluded that Cd is highly toxic to the cardiomyocytes. A majority of Cd enters these cells through transport processes that exist for Ca, Zn, and Cu. The transport processes utilized by Cd are temperature sensitive and dependent on metabolic energy. Furthermore, these involve membrane sulfhydryl groups and include Ca channels.  相似文献   

13.
The alpha2-adrenergic receptor antagonists, yohimbine, atipamezole and tolazoline, are used in veterinary medicine as reversal agents for the sedative/hypnotic effects of alpha2-agonists. Ruminants have increased sensitivity to the sedative/hypnotic effects of alpha2-agonists compared to other species. The receptors mediating the sedative effects of alpha2-agonists are located primarily on locus coeruleus neurons in the pons of the lower brainstem. Four pharmacological subtypes of the alpha2-adrenergic receptor (A,B, C and D) have been identified based on differences in ligand affinity. The aim of this study was to: 1) determine the pharmacological profile of atipamezole, yohimbine and tolazoline at the four alpha2-adrenergic receptor subtypes and; 2) determine whether these agents differ in their affinities at the alpha2-adrenergic receptor present in the sheep brainstem. In inhibition binding studies against the selective alpha2-adrenergic receptor ligand [3H]-MK-912, tolazoline showed the lowest affinity for all four alpha2-adrenergic receptor subtypes compared to yohimbine and atipamezole. The affinities of yohimbine and atipamezole were similar at the alpha2A-, alpha2B- and alpha2C-adrenergic receptors but differed by approximately 100 fold at the alpha2D-adrenergic receptor. Atipamezole had a 100 fold higher affinity at the alpha2D-adrenergic receptor when compared to yohimbine. To determine the ligand binding characteristics of these agents at the alpha2-adrenergic receptor in sheep brainstem, membranes were labelled with [3H]-MK-912 and inhibition competition curves were performed. Atipamezole showed approximately a 100 fold higher affinity for the sheep brainstem alpha2-adrenergic receptor compared to yohimbine which was similar to what was observed for the alpha2D-adrenergic receptor in PC12 cells transfected with RG-20. The results from these studies suggest that atipamezole has a high affinity for the alpha2D-adrenergic receptor that appears to be the receptor subtype in sheep brainstem.  相似文献   

14.
The gamma-aminobutyric acid (GABA)A receptor is a hetero-oligomer consisting of five subunits, the combination of which confers unique pharmacological properties to the receptor. To understand the physiological role of native GABAA receptors, it is critical to determine their subunit compositions. The pharmacological characteristics of human alpha5 beta3 gamma2 and alpha5beta3gamma3 GABAA receptors stably expressed in L(tk-) cells were characterized with the alpha5-selective ligand [3H]L-655,708 and compared with the pharmacological characteristics of [3H]L-655,708 binding sites from rat and human hippocampus. Saturation analyses revealed a 9-fold selective affinity of [3H]L-655,708 for alpha5 beta3 gamma2 receptors (Kd = 1.7 +/- 0.4 nM), compared with alpha5 beta3 gamma3 receptors (Kd = 15 +/- 3 nM). Rat and human hippocampal [3H]L-655,708 binding sites had affinities of 2.2 +/- 0.6 and 1.0 +/- 0.2 nM, respectively, comparable to the affinity of alpha5 beta3 gamma2 receptors. Pharmacological analysis of [3H]L-655,708 binding sites in rat and human hippocampi revealed a strong correlation with the affinities of seven benzodiazepine site ligands for alpha5 beta3 gamma2 but not alpha5 beta3 gamma3 receptors. Immunoprecipitation of [3H]L-655,708 binding sites from rat hippocampus with a gamma2-selective antibody yielded 19 +/- 4% of total benzodiazepine binding sites measured using [3H]Ro15-1788, whereas no specific binding was measured after immunoprecipitation with an anti-gamma3 antibody. Combinatorial immunoprecipitations of [3H]muscimol binding sites with anti-alpha5 and anti-gamma2 or anti-alpha5 and anti-gamma3 antibodies established the preferential expression of alpha5 gamma2 receptors, accounting for 22 +/- 2% of total rat hippocampal GABAA receptors. These observations provide pharmacological and structural evidence for the prevalence of alpha5 beta3 gamma2 GABAA receptors in rat hippocampus, despite the clustering of alpha5 and gamma3 loci on the same chromosome.  相似文献   

15.
Galanin is a neuropeptide that activates specific receptors to modulate several physiological functions including food intake, nociception, and learning and memory. The molecular nature of the interaction between galanin and its receptors and the fate of the galanin/receptor complex after the binding event are not understood. A fluorescein-N-galanin (F-Gal) was generated to measure the interaction between galanin and rat GalR1 galanin receptor (rGalR1) and rGalR1-mediated ligand internalization using flow cytometry in transfected Chinese hamster ovary (CHO) cells. Like galanin, F-Gal bound rGalR1 with high affinity and stimulated intracellular signaling events. Fluorescence quenching by soluble KI of rGalR1-bound F-Gal revealed a highly protected environment around the fluorescein, suggesting that the N-terminal portion of galanin, which constitutes the binding site of galanin for the receptor, binds to a protected hydrophobic binding pocket within the receptor. Exposure to F-Gal stimulated rapid (t1/2 approximately 10 min) and extensive (78%) internalization of surface F-Gal into rGalR1/CHO cells at 37 degreesC but not at 0 degreesC. In addition, the internalization did not occur in parental CHO cells at either 0 or 37 degreesC and was inhibited by addition of 0.25 M sucrose in the medium, indicating a GalR1-mediated energy-requiring endocytic process. These results revealed a hydrophobic interaction between galanin and the GalR1 receptor, which is in contrast to those of other G protein-coupled receptors that mainly require hydrophilic interaction with their peptide ligands near or outside the plasma membrane surface, and illustrated that the initial binding interaction is followed by rapid cellular internalization of the agonist/GalR1 complex.  相似文献   

16.
Pharmacological analyses of gamma-aminobutyric acidA (GABAA) receptor subtypes have suggested that both the alpha and gamma subunits, but not the beta subunit, contribute to the benzodiazepine binding site. We took advantage of the different pharmacological properties conferred by the inclusion of different gamma subunits in the receptor macromolecule to identify amino acids gamma2Phe77 and gamma2Met130 as key determinants of the benzodiazepine binding site. gamma2Phe77 was required for high affinity binding of the benzodiazepine site ligands flumazenil, CL218,872, and methyl-beta-carboline-3-carboxylate but not flunitrazepam. This amino acid was, however, required for allosteric modulation by flunitrazepam, as well as other benzodiazepine site ligands. In contrast, gamma2Met130 was required for high affinity binding of flunitrazepam, clonazepam, and triazolam but not flumazenil, CL218, 872, or methyl-beta-carboline-3-carboxylate and did not affect benzodiazepine efficacy. Introduction of the phenylalanine and methionine into the appropriate positions of gamma1 was not sufficient to confer high affinity for the benzodiazepine site ligand zolpidem. These data show that gamma2Phe77 and gamma2Met130 are necessary for high affinity binding of a number of benzodiazepine site ligands. Although most previous studies have focused on the contribution of the alpha subunit, we demonstrated a critical role for the gamma subunit at the benzodiazepine binding site, indicating that this modulatory site is located at the interface of these two subunits. Furthermore, gamma2Phe77 is homologous to alpha1Phe64, which has been previously shown to be a key determinant of the GABA binding site, suggesting a conservation of motifs between different ligand binding sites on the GABAA receptor.  相似文献   

17.
Zn2+ inhibits currents through gamma-aminobutyric acid (GABA)A receptors. Its affinity depends on the subunit composition; alpha1beta1 receptors are inhibited with high affinity (IC50 = 0.54 micro M). We sought to identify the residues that form this high affinity Zn2+ binding site. beta1His267 aligns with alpha1Ser272, a residue near the extracellular end of the M2 membrane-spanning segment that we previously demonstrated to be exposed in the channel. The Zn2+ affinity of alpha1beta1 H267S was reduced by 300-fold (IC50 = 161 micro M). Addition of a histidine at the aligned position in alpha1 creates a receptor, alpha1S272Hbeta1, that should have five channel-lining histidines; the Zn2+ affinity was increased 20-fold (IC50 = 0.025 micro M). Shifting the position of the histidine from the beta1 subunit to the aligned position in alpha1 with the two mutants alpha1S272Hbeta1H267S reduced the affinity (IC50 = 26 micro M) compared with wild-type. We infer that the high affinity Zn2+ binding site involves beta1His267 from at least two subunits. For two histidines to interact with a Zn2+ ion, the alpha carbons must be separated by <13 A. This limits the separation of the subunits and provides a constraint on the possible quaternary structures of the channel. The ability of a divalent cation to penetrate from the extracellular end of the channel to beta1His267 implies that the charge-selectivity filter, the structure that discriminates between anions and cations, is located at a more cytoplasmic position than beta1His267; this is consistent with our previous work that showed that positively charged sulfhydryl-specific reagents reacted with an engineered cysteine residue as cytoplasmic as alpha1T261C.  相似文献   

18.
Hepatocyte growth factor/scatter factor (HGF/SF) is a heparan sulfate (HS)-binding growth factor and morphogen for mammary epithelial cells that is produced by mammary stromal fibroblasts. HS chains, purified as peptidoglycans from a panel of cell lines representative of the ductal epithelial cell (Huma 123), the myoepithelial cell (Huma 109), the stromal fibroblast (Rama 27), and malignant mammary epithelial cells (MCF-7 and ZR-75), were used in a biosensor-based assay to identify the classes of HGF/SF-binding sites in the polysaccharide chains. At least three distinct binding sites were identified. One site exhibits fast association and fast dissociation kinetics [kass (1.4-7.7) x 10(6) M-1 s-1; kdiss 0. 0032-0.0096 s-1] and is present on the HS from benign Huma 123 epithelial cells, Huma 109 myoepithelial-like cells, and ZR-75 malignant cells. The second binding site, found on HS from the malignant MCF-7 cells, has slower HGF/SF-binding kinetics (kass 0.20 x 10(6) M-1 s-1; kdiss 0.00055 s-1). The third binding site possesses fast association and slow dissociation kinetics (kass 1.1 x 10(6) M-1 s-1; kdiss 0.00020 s-1) and was found on the HS isolated from the culture medium of the Huma 123 benign epithelial cells. The first and second binding sites have a similar Kd, 1-3 nM, while the third binding site has a considerably higher affinity for HGF/SF (Kd 200 pM). The three binding sites seem to be mutually exclusive, since each sample of HS possessed just one of the sites.  相似文献   

19.
OBJECTIVE: To identify binding proteins of leptin in human plasma. METHODS: Binding was evaluated by electrophoresis, size exclusion chromatography (SEC), Western blotting, and radioisotope labeling. Quantification of leptin and the different forms of alpha2-macroglobulin (alpha2-M) was performed by ELISA. RESULTS: Leptin interacts with the proteinase inhibitor, alpha2-M. 125I-labeled leptin specifically binds to the transformed inhibitor, which arises by reaction with proteinases or with reactive primary amines. No leptin binding was observed to the native alpha2-M, which abundantly occurs in plasma. The complex formation between leptin and alpha2-M was found to proceed within minutes and was stable, as it resisted separation by SEC and electrophoresis. The Kd of the complex was 2.14 +/- 0.78 micromol/l. Complex formation with transformed alpha2-M did not interfere with the immunological determination of leptin in plasma. The leptin-alpha2-M complex was found to be recognized by the alpha2-M receptor/low density lipoprotein receptor-related protein. By computer analysis, a simple model is presented showing that the degree of transformation of alpha2-M may significantly influence the leptin concentration in blood. CONCLUSIONS: The proteinase inhibitor, alpha2-M, may act as a leptin-binding protein in human plasma. Binding of leptin to transformed alpha2-M and its rapid clearance by the alpha2-M receptor may significantly influence the bioavailability of leptin in human plasma.  相似文献   

20.
Ligand binding sites in fetal (alpha2betagammadelta) and adult (alpha2betadeltaepsilon) muscle acetylcholine receptors are formed by alphadelta, alphagamma, or alphaepsilon subunit pairs. Each type of binding site shows unique ligand selectivity due to different contributions by the delta, gamma, or epsilon subunits. The present study compares epibatidine and carbamylcholine binding in terms of their site and state selectivities for muscle receptors expressed in human embryonic kidney 293 cells. Measurements of binding to alphagamma, alphadelta, and alphaepsilon intracellular complexes reveal opposite site selectivities between epibatidine and carbamylcholine; for epibatidine the rank order of affinities is alphaepsilon > alphagamma > alphadelta, whereas for carbamylcholine the rank order is alphadelta congruent with alphaepsilon > alphagamma. Because the relative affinities of intracellular complexes resemble those of receptors in the closed activable state, the results suggest that epibatidine binds with unique site selectivity in activating the muscle receptor. Measurements of binding at equilibrium show that both enantiomers of epibatidine bind to adult and fetal receptors with shallow but monophasic binding curves. However, when receptors are fully desensitized, epibatidine binds in a biphasic manner, with dissociation constants of the two components differing by more than 170-fold. Studies of subunit-omitted receptors (alpha2betadelta2, alpha2betagamma2, and alpha2betaepsilon2) reveal that in the desensitized state, the alphadelta interface forms the low affinity epibatidine site, whereas the alphagamma and alphaepsilon interfaces form high affinity sites. In contrast to epibatidine, carbamylcholine shows little site selectivity for desensitized fetal or adult receptors. Thus epibatidine is a potentially valuable probe of acetylcholine receptor binding site structure and of elements that confer state-dependent selectivities of the binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号