首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the prisoner's dilemma game based on a new rule: players will change their current strategies to opposite strategies with some probability if their neighbours' average payoffs are higher than theirs. Compared with the cases on regular lattices (RL) and Newman-Watts small world network (NW), cooperation can be best enhanced on the scale-free Barabasi-Albert network (BA). It is found that cooperators are dispersive on RL network, which is different from previously reported results that cooperators will form large clusters to resist the invasion of defectors. Cooperative behaviours on the BA network are discussed in detail. It is found that large-degree individuals have lower cooperation level and gain higher average payoffs than that of small-degree individuals. In addition, we find that small-degree individuals more frequently change strategies than do large- degree individuals.  相似文献   

2.
We investigate the evolutionary prisoner's dilemma on a weighted scale-free network where the diversity of teaching ability is introduced to the network in the form of weight. Though the diversity of teaching ability is not a sufficient condition for the enhancement of cooperation, we find that the degree-dependent teaching ability plays an active role in the evolution of cooperation. A new phenomenon is found when the degree-dependent teaching ability is used: the distribution of the cooperator frequency displays a two-peak structure for a certain parameter range. We also investigate the effects of the degree-degree correlation of the network on the evolution of cooperation in the presence of the diversity of the teaching ability.  相似文献   

3.
We study the effects of degree correlations on the evolution of cooperation in the prisoner's dilemma game with individuals located on two types of positively correlated networks. It is shown that the positive degree correlation can either promote or inhibit the emergence of cooperation depending on network configurations. Furthermore, we investigate the probability to cooperate as a function of connectivity degree, and find that high-degree individuals generally have a higher tendency to cooperate. Finally, it is found that small-degree individuals usually change their strategy more frequently, and such change is shown to be unfavourable to cooperation for both kinds of networks.  相似文献   

4.
We study the evolution of cooperation for two cluster breaking mechanisms in a herding snowdrift game. The cooperative behavior is observed to be related to the duster size. A negative dependence of the payoff parameter r on cooperative behavior is discovered. For a low r, herding helps promote the cooperation, whereas for a high r, herding tends to prevent cooperative behavior.  相似文献   

5.
Xiao-Bin Dai 《Physica A》2007,383(2):624-630
Using molecular dynamics (MD) simulation and evolutionary game theory, we incorporate the spacial structure of individuals into the study of the behaviors of cooperation, by adopting the prisoner's dilemma and snowdrift game as metaphors of cooperation between unrelated individuals. The results show that the introduction of spacial structure enhances cooperation using the strategy of prisoner's dilemma while does not make much changes to the cooperation if the strategy of snowdrift game is used. It is also found that our model is a meta-phase between regular ring graph model and complex network model. And the “activity of players” T* we introduced makes our simulation much more closer to real world problems.  相似文献   

6.
K.H. Lee  P.M. Hui 《Physica A》2008,387(22):5602-5608
Cooperation in the N-person evolutionary snowdrift game (NESG) is studied in scale-free Barabási-Albert (BA) networks. Due to the inhomogeneity of the network, two versions of NESG are proposed and studied. In a model where the size of the competing group varies from agent to agent, the fraction of cooperators drops as a function of the payoff parameter. The networking effect is studied via the fraction of cooperative agents for nodes with a particular degree. For small payoff parameters, it is found that the small-k agents are dominantly cooperators, while large-k agents are of non-cooperators. Studying the spatial correlation reveals that cooperative agents will avoid to be nearest neighbors and the correlation disappears beyond the next-nearest neighbors. The behavior can be explained in terms of the networking effect and payoffs. In another model with a fixed size of competing groups, the fraction of cooperators could show a non-monotonic behavior in the regime of small payoff parameters. This non-trivial behavior is found to be a combined effect of the many agents with the smallest degree in the BA network and the increasing fraction of cooperators among these agents with the payoff for small payoffs.  相似文献   

7.
Eleni Arapaki 《Physica A》2009,388(13):2757-2761
We study the spatial prisoner’s dilemma game where the players are located on the nodes of a random scale-free network. The prisoner’s dilemma game is a powerful tool and has been used for the study of mutual trust and cooperation among individuals in structured populations. We vary the structure of the network and the payoff values for the game, and show that the specific conditions can greatly influence the outcome of the game. A variety of behaviors are reproduced and the percentage of cooperating agents fluctuates significantly, even in the absence of irrational behavior. For example, the steady state of the game may be a configuration where either cooperators or defectors dominate, while in many cases the solution fluctuates between these two limiting behaviors.  相似文献   

8.
A memory-based snowdrift game (MBSG) on spatial small-world networks is investigated. It is found that cooperation rate versus temptation shows some step structures on small-world networks, similar to the case on regular lattices. With the increment of rewiring probability based on four-neighbourregular lattices, more steps are observable. Interestingly, it is observed that cooperation rate peaks at a specific value of temptation, which indicates that properly encouraging selfish actions may lead to better cooperative behaviours in the MBSG on small-world networks. Memory effects are also discussed for different rewiring probabilities. Furthermore, optimal regions arefound in the parameter planes. The strategy-related average degrees of individuals are helpful to understand the obtained results.  相似文献   

9.
We combine the Fermi and Moran update rules in the spatial prisoner's dilemma and snowdrift games to investigate the behavior of collective cooperation among agents on the regular lattice. Large-scale simulations indicate that, compared to the model with only one update rule, the cooperation behavior exhibits the richer phenomena, and the role of update dynamics should be paid more attention in the evolutionary game theory. Meanwhile, we also observe that the introduction of Moran rule, which needs to consider all neighbor's information, can markedly promote the aggregate cooperation level, that is, randomly selecting the neighbor proportional to its payoff to imitate will facilitate the cooperation among agents. Current results will contribute to further understand the cooperation dynamics and evolutionary behaviors within many biological, economic and social systems.  相似文献   

10.
We combine the Fermi and Moran update rules in the spatial prisoner's dilemma and snowdrift games to investigate the behavior of collective cooperation among agents on the regular lattice.Large-scale simulations indicate that,compared to the model with only one update rule,the cooperation behavior exhibits the richer phenomena,and the role of update dynamics should be paid more attention in the evolutionary game theory.Meanwhile,we also observe that the introduction of Moran rule,which needs to consider all neighbor's information,can markedly promote the aggregate cooperation level,that is,randomly selecting the neighbor proportional to its payoff to imitate will facilitate the cooperation among agents.Current results will contribute to further understand the cooperation dynamics and evolutionary behaviors within many biological,economic and social systems.  相似文献   

11.
We investigate the evolution of cooperative behaviors of small-world networking agents in a snowdrift game mode, where two agents (nodes) are connected with probability depending on their spatial Euclidean lattice distance in the power-law form controlled by an exponent α. Extensive numerical simulations indicate that the game dynamics crucially depends on the spatial topological structure of underlying networks with different values of the exponent α. Especially, in the distance-independent case of α=0, the small-world connectivity pattern contributes to an enhancement of cooperation compared with that in regular lattices, even for the case of having a high cost-to-benefit ratio r. However, with the increment of α>0, when r≥0.4, the spatial distance-dependent small-world (SDSW) structure tends to inhibit the evolution of cooperation in the snowdrift game.  相似文献   

12.
We study effects of average degree on cooperation in the networked prisoner's dilemma game. Typical structures are considered, including random networks, small-world networks and scale-free networks. Simulation results show that the average degree plays a universal role in cooperation occurring on all these networks, that is the density of cooperators peaks at some specific values of the average degree. Moreover, we investigated the average payoff of players through numerical simulations together with theoretical predictions and found that simulation results agree with the predictions. Our work may be helpful in understanding network effects on the evolutionary games.  相似文献   

13.
In human societies the probability of strategy adoption from a given person may be affected by the personal features. Now we investigate how an artificially imposed restricted ability to reproduce, overruling ones fitness, affects an evolutionary process. For this purpose we employ the evolutionary prisoner's dilemma game on different complex graphs. Reproduction restrictions can have a facilitative effect on the evolution of cooperation that sets in irrespective of particularities of the interaction network. Indeed, an appropriate fraction of less fertile individuals may lead to full supremacy of cooperators where otherwise defection would be widespread. By studying cooperation levels within the group of individuals having full reproduction capabilities, we reveal that the recent mechanism for the promotion of cooperation is conceptually similar to the one reported previously for scale-free networks. Our results suggest that the diversity in the reproduction capability, related to inherently different attitudes of individuals, can enforce the emergence of cooperative behavior among selfish competitors.  相似文献   

14.
We study evolutionary games in two-layer networks by introducing the correlation between two layers through the C-dominance or the D-dominance. We assume that individuals play prisoner's dilemma game(PDG) in one layer and snowdrift game(SDG) in the other. We explore the dependences of the fraction of the strategy cooperation in different layers on the game parameter and initial conditions. The results on two-layer square lattices show that, when cooperation is the dominant strategy; initial conditions strongly influence cooperation in the PDG layer while have no impact in the SDG layer. Moreover,in contrast to the result for PDG in single-layer square lattices, the parameter regime where cooperation could be maintained expands significantly in the PDG layer. We also investigate the effects of mutation and network topology. We find that different mutation rates do not change the cooperation behaviors. Moreover,similar behaviors on cooperation could be found in two-layer random networks.  相似文献   

15.
We study the effects of mobility on the evolution of cooperation among mobile players, which imitate collective motion of biological flocks and interact with neighbors within a prescribed radius R. Adopting the the prisoner’s dilemma game and the snowdrift game as metaphors, we find that cooperation can be maintained and even enhanced for low velocities and small payoff parameters, when compared with the case that all agents do not move. But such enhancement of cooperation is largely determined by the value of R, and for modest values of R, there is an optimal value of velocity to induce the maximum cooperation level. Besides, we find that intermediate values of R or initial population densities are most favorable for cooperation, when the velocity is fixed. Depending on the payoff parameters, the system can reach an absorbing state of cooperation when the snowdrift game is played. Our findings may help understanding the relations between individual mobility and cooperative behavior in social systems.  相似文献   

16.
Shao-Meng Qin 《Physica A》2009,388(23):4893-4900
Most papers about the evolutionary game on graph assume the statistic network structure. However, in the real world, social interaction could change the relationship among people. And the change of social structure will also affect people’s strategies. We build a coevolution model of prisoner’s dilemma game and network structure to study the dynamic interaction in the real world. Differing from other coevolution models, players rewire their network connections according to the density of cooperation and other players’ payoffs. We use a parameter α to control the effect of payoff in the process of rewiring. Based on the asynchronous update rule and Monte Carlo simulation, we find that, when players prefer to rewire their links to those who are richer, the temptation can increase the cooperation density.  相似文献   

17.
We study the evolution of cooperation in the framework of evolutionary game theory, adopting the prisoner's dilemma and snowdrift game as metaphors of cooperation between unrelated individuals. In sharp contrast with previous results we find that, whenever individuals interact following networks of contacts generated via growth and preferential attachment, leading to strong correlations between individuals, cooperation becomes the dominating trait throughout the entire range of parameters of both games, as such providing a unifying framework for the emergence of cooperation. Such emergence is shown to be inhibited whenever the correlations between individuals are decreased or removed. These results are shown to apply from very large population sizes down to small communities with nearly 100 individuals.  相似文献   

18.
Xianyu Bo 《Physica A》2010,389(5):1105-1114
Prevailing models of the evolutionary prisoner’s game on networks always assume that agents are pursuing their own profit maximization. But the results from experimental games show that many agents have other-regarding preference. In this paper, we study the emergence of cooperation from the prisoner’s dilemma game on complex networks while some agents exhibit other-regarding preference such as inequality aversion, envious and guilty emotions. Contrary to common ideas, the simulation results show that the existence of inequality aversion agents does not promote cooperation emergence on a BA (Barabási and Albert) scale-free network in most situations. If the defection attraction is big and agents exhibit strong preference for inequality aversion, the frequency of cooperators will be lower than in situations where no inequality aversion agents exist. In some cases, the existence of the inequality agents will even induce the frequency of cooperators to zero, a feature which is not observed in previous research on the prisoner’s dilemma game when the underlying interaction topology is a BA scale-free network. This means that if an agent cares about equality too much, it will be difficult for cooperation to emerge and the frequency of cooperators will be low on BA networks. The research on the effect of envy or guilty emotions on the emergence of cooperation in the prisoner’s dilemma game on BA networks obtains similar results, though some differences exist. However, simulation results on a WS (Watts and Strogatz) small-world network display another scenario. If agents care about the inequality of agents very much, the WS network favors cooperation emergence in the prisoners’ dilemma game when other-regarding agents exist. If the agent weight on other-regarding is lowered, the cooperation frequencies emerging on a WS network are not much different from those in situations without other-regarding agents, although the frequency of cooperators is lower than those of the situation without other-regarding preference agents sometimes. All the simulation results imply that inequality aversion and its variations can have important effects on cooperation emergence in the prisoner’s dilemma game, and different network topologies have different effects on cooperation emergence in the prisoner’s dilemma game played on complex networks.  相似文献   

19.
In this paper, we bring an unequal payoff allocation mechanism into evolutionary public goods game on scale-free networks and focus on the cooperative behavior of the system. The unequal mechanism can be tuned by one parameter α: if α>0, the hub nodes can use its degree advantage to collect more payoff; if α<0, numerous non-hub nodes will obtain more payoff in a single round game. Simulation results show that the cooperation level has a non-trivial dependence on α. For the small enhancement factor r, the cooperator frequency can be promoted by both negative and positive α. For large r, there exists an optimal α that can obtain the highest cooperation level. Our results may sharpen the understanding of the emergence of cooperation induced by the unequal payoff allocation mechanism.  相似文献   

20.
Human cooperation can be influenced by other human behaviors and recent years have witnessed the flourishing of studying the coevolution of cooperation and punishment, yet the common behavior of charity is seldom considered in game-theoretical models. In this article, we investigate the coevolution of altruistic cooperation and egalitarian charity in spatial public goods game, by considering charity as the behavior of reducing inter-individual payoff differences. Our model is that, in each generation of the evolution, individuals play games first and accumulate payoff benefits, and then each egalitarian makes a charity donation by payoff transfer in its neighborhood. To study the individual-level evolutionary dynamics, we adopt different strategy update rules and investigate their effects on charity and cooperation. These rules can be classified into two global rules: random selection rule in which individuals randomly update strategies, and threshold selection rule where only those with payoffs below a threshold update strategies. Simulation results show that random selection enhances the cooperation level, while threshold selection lowers the threshold of the multiplication factor to maintain cooperation. When charity is considered, it is incapable in promoting cooperation under random selection, whereas it promotes cooperation under threshold selection. Interestingly, the evolution of charity strongly depends on the dispersion of payoff acquisitions of the population, which agrees with previous results. Our work may shed light on understanding human egalitarianism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号