首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Experimental investigation was performed on the mixed convection heat transfer of thermal entrance region in an inclined rectangular duct for laminar and transition flow. Air flowed upwardly and downwardly with inclination angles from ?90° to 90°. The duct was made of duralumin plate and heated with uniform heat flux axially. The experiment was designed for determining the effects of inclination angles on the heat transfer coefficients and friction factors at seven orientations (θ = ? 90°, ?60°, ?30°, 0°, 30°, 60° and 90°), six Reynolds numbers (Re  420, 840, 1290, 1720, 2190 and 2630) within the range of Grashof numbers from 6.8 × 103 to 4.1 × 104. The optimum inclination angles that yielded the maximum heat transfer coefficients decreased from 30° to ?30° with the increase of Reynolds numbers from 420 to 1720. The heat transfer coefficients first increased with inclination angles up to a maximum value and then decreased. With further increase in Reynolds numbers, the heat transfer coefficients were nearly independent of inclination angles. The friction factors decreased with the increase of inclination angles from ?90° to 90° when Reynolds numbers ranged from 420 to 1290, and independent of inclination angles with higher Reynolds numbers.  相似文献   

2.
The potential of punched winglet type vortex generator (VG) arrays used to enhance air-side heat-transfer performance of finned tube heat exchanger is numerically investigated. The arrays are composed of two delta-winglet pairs with two layout modes of continuous and discontinuous winglets. The heat transfer performance of two array arrangements are compared to a conventional large winglet configuration for the Reynolds number ranging from 600 to 2600 based on the tube collar diameter, with the corresponding frontal air velocity ranging from 0.54 to 2.3 m/s. The effects of different geometry parameters that include attack angle of delta winglets (β = 10 deg, β = 20 deg, β = 30 deg) and the layout locations are examined. The numerical results show that for the punched VG cases, the effectiveness of the main vortex to the heat transfer enhancement is not fully dominant while the “corner vortex” also shows significant effect on the heat transfer performance. Both heat transfer coefficient and pressure drop increase with the increase of attack angle β for the side arrangements; the arrays with discontinuous winglets show the best heat transfer enhancement, and a significant augmentation of up to 33.8–70.6% in heat transfer coefficient is achieved accompanied by a pressure drop penalty of 43.4–97.2% for the 30 deg case compared to the plain fin. For the front arrangements of VGs higher heat transfer enhancement and pressure drop penalty can be obtained compared to that of the side arrangement cases; the case with front continuous winglet arrays has the maximum value of j/f, a corresponding heat transfer improvement of 36.7–81.2% and a pressure drop penalty of 60.7–135.6%.  相似文献   

3.
An experimental study was conducted to investigate how the addition of small amounts of a surfactant influences the heat transfer characteristics in a thin boiling liquid film flowing in a diverging open channel. Heat transfer experiments were conducted with fluid inlet temperatures from 40 °C to 92 °C. The flow field on the plate included thin film supercritical flow upstream of a hydraulic jump and thick film subcritical flow downstream of a hydraulic jump. Nusselt numbers for the non-boiling heat transfer without surfactant addition scaled linearly with the film Reynolds number. The boiling heat transfer produced higher Nusselt numbers with a weaker dependence on the Reynolds number. Experimental results showed that a boiling surfactant solution created a thick foam layer with high heat transfer rates and Nusselt numbers that are very weakly dependent on the inlet flow rate or the inlet Reynolds number.  相似文献   

4.
An experimental investigation has been conducted to clarify forced convection heat transfer characteristic and flow behavior of an isothermal cam shaped tube in cross flow. The range of angle of attack and Reynolds number based on an equivalent circular tube are within 0° < α < 180° and 1.5 × 104 < Reeq < 2.7 × 104, respectively.The results show that the mean heat transfer coefficient is a maximum at about α = 90° over the whole range of the Reynolds numbers. It is found that thermal hydraulic performance of the cam shaped tube is larger than that of a circular tube with the same surface area except for α = 90° and 120°. Furthermore, the effect of the diameter of the cam shaped tube upon the thermal hydraulic performance is discussed.  相似文献   

5.
Based on the analysis of experimental data the universal methods of calculating convective heat transfer of smooth and finned tube bundles in the crossflow have been developed over the ranges of geometric characteristics covering all practical needs at the Reynolds number Re = 3 × 103…1 × 105.The distinctive feature of the methods proposed is that the generalized similarity equation of convective heat transfer takes into account the dependence of the Reynolds number exponent on tube pitch characteristics in a bundle. This has allowed the mechanism of heat transfer and hydraulic performance in tube bundles to be taken into utmost consideration and the asymptotic character to be given to the generalized dependence. In turn, this has permitted one to show the presence of maximum of heat transfer intensity and also to cover limiting combinations of pitches, at which differences in staggered and in-line arrangements of tubes are leveled, i.e., practically the restrictions on the ranges of tube pitch characteristics of bundles can be removed.  相似文献   

6.
A study of the convective heat transfer enhancement of heated surfaces through the use of active delta wing vortex generators is reported in this paper. The surface-mounted vortex generators (VGs) change their shape to intrude further into the flow at high temperatures to enhance heat transfer, while maintaining a low profile at low temperatures to minimise flow pressure losses. The VGs are made from shape memory alloys and manufactured in a selective laser melting process. Experiments have been carried out in a rectangular duct supplied with laminar-transition air flow. In the test section, a single, and a pair of active delta wing VGs were placed near the leading edge of a heated plate and tested separately for their heat transfer enhancement effects using infrared thermography. The pressure difference across the test section was also measured to determine the pressure drop penalty associated with the obstruction caused by the vortex generators in their active positions. Promising shape memory response was obtained from the active VG samples when their surface temperatures were varied from 20 °C to 65 °C. The vortex generators responded by increasing their angles of attack from 10° to 38° and as the designs were two-way trained, they regained their initial position and shape at a lower temperature. At their activated positions, maximum heat transfer improvements of up to 90% and 80% were achieved by the single and double wings respectively along the downstream direction. The flow pressure losses across the test section, when the wings were activated, increased between 7% and 63% of the losses at their de-activated positions, for the single and double VG respectively.  相似文献   

7.
Measurements of heat transfer coefficient (h) are presented for rows of round holes at streamwise angles of 30°, 60° and 90° with a short but engine representative hole length (L/D = 4). The study began with a single row of holes with pitch-to-diameter ratios of 3 and 6, followed by two inline and staggered rows for each hole spacing and streamwise inclination, which amount to 105 different test cases in addition to the 21 test cases presented on the single hole [C.H.N. Yuen, R.F. Martinez-Botas, Film cooling characteristics of a single round hole at various angles in a crossflow: Part I. Effectiveness, Int. J. Heat Mass Transfer, in press; C.H.N. Yuen, R.F. Martinez-Botas, Film cooling characteristics of a single round hole at various angles in a crossflow: Part II. Heat transfer coefficients, Int. J. Heat Mass Transfer, in press]. The present investigation is a continuation of the previous work [Yuen and Martinez-Botas, Parts I and II, in press] with the same test facility, operating conditions (freestream Reynolds number, ReD of 8563, and blowing ratio, 0.33  M  2), and measurement technique of liquid crystal thermography and the steady-state heat transfer method, therefore the results presented in the form of h/h0, which is the ratio of heat transfer coefficient with film cooling to that without, are directly comparable. Both local values and laterally averaged ones are presented, the latter refers to the averaged value across the central hole. The corresponding measurements of effectiveness for the rows of holes are presented in a companion paper [C.H.N. Yuen, R.F. Martinez-Botas, Film cooling characteristics of rows of round holes at various angles in a crossflow: Part I. Effectiveness, Int. J. Heat Mass Transfer, submitted for publication]. The low effectiveness observed with the 90° holes in the companion paper [Yuen and Martinez-Botas, submitted for publication] and the relatively large heat transfer coefficient presented here, suggest that the normal injection should only be used in situations where shallower holes are not feasible. The combined performance of effectiveness and heat transfer coefficient suggests that the two inline rows are likely to be advantageous in the film cooling of turbine blades with good coverage per unit mass flow of cooling air and lower thermal stresses due to the smaller heat load.  相似文献   

8.
The heat transfer performance of five submerged and confined microjet arrays using air and deionized water as the working fluids was investigated. Both inline and staggered array arrangements of jet with diameters of 54 and 112 μm were investigated, and the area ratio (total area of the jets divided by the surface area) was varied between 0.036 and 0.35. Reynolds numbers defined by the jet diameter were in the range of 180–5100 for air and 50–3500 for water. A heat flux of 1100 W/cm2 was obtained at a fluid inlet-to-surface temperature difference of less than 30 °C. The results were compared with established correlations, and no evidence was found to suggest that the behavior of submerged and confined jets at the microscale is fundamentally different than at the macroscale. Reynolds number, Prandtl number, and area ratio were found to significantly affect the heat transfer performance, and a curve fit was developed, which correlated 290 of the 295 data points within ±25% with an MAE of 11%.  相似文献   

9.
Experimental heat transfer studies during evaporation of R-134a inside a corrugated tube have been carried out. The corrugated tube has been provided with different tube inclination angles of the direction of fluid flow from horizontal, α. The experiments were performed for seven different tube inclinations, α, in a range of − 90° to + 90° and four mass velocities of 46, 81, 110 and 136 kg m 2 s 1 for each tube inclination angle during evaporation of R-134a. Data analysis demonstrate that the tube inclination angle, α, affects the boiling heat transfer coefficient in a significant manner. The effect of tube inclination angle, α, on heat transfer coefficient, h, is more prominent at low vapor quality and mass velocity. In the low vapor quality region, the heat transfer coefficient, h, for the + 90° inclined tube is about 62% more than that of the − 90° inclined tube. The results also showed that at all mass velocities, the highest average heat transfer coefficient were achieved for α = + 90°. An empirical correlation has also been developed to predict the heat transfer coefficient during flow boiling inside a corrugated tube with different tube inclinations.  相似文献   

10.
Heat transfer and pressure loss characteristics of a high aspect ratio duct are measured under both, jet impingement and channel flow conditions, respectively. For both cases, roughness elements in consideration are staggered and inline axial ribs. The spacing (P) to height (e) ratios studied are P/e = 2 and P/e = 4; the rib height (e) to channel height (H) ratio is 0.125. Also studied is an aluminum foam roughness with a porosity of 92% and a height to channel height ratio of 0.15. Reynolds numbers considered for the channel flow case (based on the hydraulic diameter) range from 10,000 to 40,000. Reynolds numbers for the jet impingement case (based on the hole diameter) range from 5,000 to 20,000. Tests are performed using the copper plate regional average method. Results show a 50–90% increase in heat transfer due to the use of axial ribs in both, impingement and channel flow cases. The porous foam shows a more significant increase in heat transfer coefficient for both channel flow and impingement cases.  相似文献   

11.
In this paper, experimentally determined pressure drop and heat transfer characteristics of flow of water in a 75-start spirally grooved tube with twisted tape insert are presented. Laminar to fully turbulent ranges of Reynolds numbers have been considered. The grooves are clockwise with respect to the direction of flow. Compared to smooth tube, the heat transfer enhancement due to spiral grooves is further augmented by inserting twisted tapes having twist ratios Y ? 10.15, 7.95 and 3.4. It is found that the direction of twist (clockwise and anticlockwise) influences the thermo-hydraulic characteristics. Constant pumping power comparisons with smooth tube characteristics show that in spirally grooved tube with and without twisted tape, heat transfer increases considerably in laminar and moderately in turbulent range of Reynolds numbers. However, for the bare spiral tube and for spiral tube with anticlockwise twisted tape (Y = 10.15), reduction in heat transfer is noticed over a transition range of Reynolds numbers.  相似文献   

12.
This study concerns water saturated flow boiling heat transfer in an array of staggered square micro-pin-fins having a 200 × 200 μm2 cross-section by a 670 μm height. Three inlet temperatures of 90, 60, and 30 °C, six mass velocities for each inlet temperature, ranging from 183 to 420 kg/m2 s, and outlet pressures between 1.03 and 1.08 bar were tested. Heat fluxes ranged from 23.7 to 248.5 W/cm2. Heat transfer coefficient was fairly constant at high quality, insensitive to both quality and mass velocity. Heat transfer was enhanced by inlet subcooling at low quality. Possible heat transfer mechanism was discussed.  相似文献   

13.
This study is to experimentally investigate the heat transfer enhancement by delta winglet vortex generators in air cooling of a staggered array of rectangular electronic modules. The winglet vortex generators are placed in front of 3 × 5 modules with 20° attack angle. Each module has dimensions of 1.8 × 5.4 × 0.6 mm and each one generates heat at 2.5 W. The adiabatic heat transfer coefficients, the thermal wake functions including their correlations for the modules with and without the vortex generators are considered at different values of Reynolds number and the module density. It could be seen that the vortex generators could enhance the adiabatic heat transfer coefficients, reduce the thermal wake functions and the module temperatures significantly. The module temperatures predicted by the superposition of the convective effect due to the module heat generations and the module thermal wakes are fitted very well with the measured data.  相似文献   

14.
This paper describes the numerical evaluation of a novel cross flow tube bundle heat exchanger that combines tubes of different diameter in an inline arrangement for the purpose of reducing gas side particulate fouling rates while preserving acceptable levels of heat transfer and pressure drop performance. Three arrangements are compared: a common inline tube bundle heat exchanger with cylinders of equal diameter and two other arrangements that consist of alternately placed cylinders with a diameter ratio of d/D = 0.5, at two different transverse spacings. Numerical calculations are performed in order to study heat transfer, pressure drop and fouling rates from flue gases with suspended ash particles. The alternating tube sizes achieve a suppression of the vortex shedding mechanism that has previously been shown to enhance downstream particle deposition. Results show that, compared to the standard arrangement, the tube bundle with unequal cylinders placed at the largest transverse spacing achieves a significant (~30%) reduction in particle deposition rate without sacrificing acceptable values of heat transfer per unit volume and low pressure drop.  相似文献   

15.
Thermal performance criteria of elliptic tube bundle in crossflow   总被引:1,自引:0,他引:1  
In this work, the thermofluid characteristics of the elliptic tube bundle in crossflow have been investigated. Experimental and numerical investigations of the turbulent flow through bundle of elliptic tubes heat exchanger are carried out with a particular reference to the circular tube bundle. The investigation covers the effects of key design parameters of Reynolds numbers (5600–40,000), minor-to-major axis ratios (0.25, 0.33. 0.5 and 1) and flow angles of attack (0–150°). Five bundles of elliptic tube heat exchangers with different axis ratios were designed and manufactured in staggered manner. Numerical CFD modeling using finite volume discretization method was conducted to predict the system performance extensively. Four methods were presented to resort a metric that expresses the thermal performance criteria of the elliptic tube bundle. The results indicated that, increasing the angle of attack clockwise until 90° enhances the convective heat transfer coefficient considerably. The maximum thermal performance under constraint of a fixed pumping power or a mass flow rate was obtained at a zero angle of attack and the minimum thermal performance occurred at an angle of attack equals 90°. The best thermal performance of the elliptic tube heat exchanger was qualified with the lower values of Reynolds number, axis ratio and angle of attack.  相似文献   

16.
An experimental investigation was conducted to study the relative hydrodynamic and thermal performance of microfluidic, constructal-based, self-similar bifurcated flow channel arrangements with branching angles of 90°. The complexity of the microchannel arrangement was varied from zero to three bifurcation levels while the heat transfer area was held constant for all complexity levels. Constraining the area facilitates comparison of the thermal performance of test sections of different complexities. Each of the channel arrangements considered was incorporated into an independent, modular test section, which had overall dimensions of 10 mm by 10 mm. Using soft lithography and other standard microfabrication techniques, each test section was fabricated and assembled from a silicon heat transfer layer and two polydimethylsiloxane (PDMS) layers which were stacked and bonded to form a monolithic test section. For the testing, an experimental apparatus was designed that allowed for experiments to be run at fixed pressure drops. Experiments were performed for single fixed inlet fluid and heater temperatures and at various pressure drops. The results, which are reported in terms of mass flow rate, heat transfer rate, pumping power, and overall test section coefficient of performance (COP), indicate that complexity has a strong effect on both the pressure drop and heat transfer. When the pumping power required to produce a given heat transfer rate is taken into account, the results suggest that higher complexity arrangements can be beneficial under certain conditions, as theoretically shown in the literature. This conclusion is also confirmed by the trends observed in the COP.  相似文献   

17.
This study experimentally determined the local and average heat transfer characteristics in asymmetrically heated sintered porous channels with metallic baffles. The fluid medium was air. Measurements on the test specimen of four modes, without baffles (A), with periodic baffles on the top portion (B), with periodic baffles on the bottom portion (C) and with staggered periodic baffles on both sides (D), are performed. The effect of the average bead diameter was also examined (d = 0.704 and 1.163 mm). The data indicated that, the wall temperatures measured at baffles attached to the heated wall were slightly lower than those nearby, especially at high Reynolds numbers. In modes B and D, the heat transfer in the inlet region was weaker than that in modes A and C. Additionally, the heat transfer by forced convection in all modes increased as the bead diameter decreased. The effect of the bead diameter became stronger as the Reynolds number was increased. At Re > 2000, heat transfer was greatest in mode B and least in mode D, in which the heat transfer was even poorer than that without baffles. For a Re of around 1000, mode D was associated with an excellent heat transfer. In such a case, heat transfer enhancement was around 20  30% in mode D, around 10  20% in mode B and around 0  12% in mode C.  相似文献   

18.
The turbulent heat transfer and flow resistance in an enhanced heat transfer tube, the DDIR tube, were studied experimentally and numerically. Water was used as the working fluid with Reynolds numbers between 15,000 and 60,000. The numerical simulations solved the three dimensional Reynolds-averaged Navier–Stokes equations with the standard k-ε model in the commercial CFD code, Fluent. The numerical results agree well with the experimental data, with the largest discrepancy of 10% for the Nusselt numbers and 15% for the friction factors. The heat transfer in the DDIR tube is enhanced 100  120% compared with a plain tube and the pressure drop is increased 170  250%. The heat transfer rate for the same pumping power is enhanced 30  50%. Visualization of the flow field shows that in addition to the front and rear vortices around the ribs, main vortices and induced vortices are also generated by the ribs in the DDIR tube. The rear vortex and the main vortex contribute much to the heat transfer enhancement in the DDIR tubes. Optimum DDIR tube parameters are proposed for heat transfer enhancement at the same pumping power.  相似文献   

19.
The article presents an experimental study of turbulent heat transfer and flow friction characteristics in a circular tube equipped with two types of twisted tapes: (1) typical twisted tapes and (2) alternate clockwise and counterclockwise twisted tapes (C–CC twisted tapes). Nine different C–CC twisted tapes are tested in the current work; they included the tapes with three twist ratios, y/w = 3.0, 4.0 and 5.0, each with three twist angles, θ = 30o, 60o and 90o. The experiments have been performed over a Reynolds number range of 3000–27,000 under uniform heat flux conditions, using water as working fluid. The obtained results reveal that the C–CC twisted-tapes provide higher heat transfer rate, friction factor and heat transfer enhancement index than the typical twisted-tapes at similar operating conditions. The results also show that the heat transfer rate of the C–CC tapes increases with the decrease of twist ratio and the increase of twist angle values. Depending on Reynolds number, twist ratio and twist angle values, the mean Nusselt numbers in the tube fitted with the C–CC twisted tapes are higher than those with the typical ones and the plain tube around 12.8–41.9% and 27.3–90.5%, respectively. The maximum heat transfer enhancement indexes of the C–CC twisted tapes with θ = 90o for y/w = 3.0, 4.0 and 5.0, are 1.4, 1.34 and 1.3, respectively. In addition, correlations of the Nusselt number and the friction factor for using the C–CC twisted tapes are also determined. Both predicted Nusselt number and friction factor are within ±15% and ±15% deviation compared to the experimental data.  相似文献   

20.
Helical-wire-coils fitted inside a round tube have been experimentally studied in order to characterize their thermohydraulic behaviour in laminar, transition and turbulent flow. By using water and water–propylene glycol mixtures at different temperatures, a wide range of flow conditions have been covered: Reynolds numbers from 80 to 90,000 and Prandtl numbers from 2.8 to 150. Six wire coils were tested within a geometrical range of helical pitch 1.17 < p/d < 2.68 and wire diameter 0.07 < e/d < 0.10. Experimental correlations of Fanning friction factor and Nusselt number as functions of flow and dimensionless geometric parameters have been proposed. Results have shown that in turbulent flow wire coils increase pressure drop up to nine times and heat transfer up to four times compared to the empty smooth tube. At low Reynolds numbers, wire coils behave as a smooth tube but accelerate transition to critical Reynolds numbers down to 700. Within the transition region, if wire coils are fitted inside a smooth tube heat exchanger, heat transfer rate can be increased up to 200% keeping pumping power constant. Wire coil inserts offer their best performance within the transition region where they show a considerable advantage over other enhancement techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号