首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
3-Deoxy-3-fluoro-D-glucose (3FG) administered by injection is toxic to adult Locusta migratoria or Schistocerca gregaria (LD50, 4.8 mg/g). temperature-programmed and isothermal gas chromatographic analysis of poisoned locust haemolymph reveals the presence of a fluorinated metabolite identified as 3-deoxy-3-fluoro-D-glucitol (3FGL). The enzymes responsible for the accumulation of this metabolite are located in the fat body of the insect and partially purified as aldose reductase (alditol: NADP+ 1-oxidoreductase, EC 1.1.1.21) and sorbitol dehydrogenase (L-iditol: NAD+ 5-oxidoreductase EC 1.1.1.14) 3FGL is shown to be both a competitive inhibitor of the NAD-linked sorbitol dehydrogenase with Ki 8?x 10(-2) M as well as a substrate with Km 0.5 M. A kinetic rate equation is derived and verified to account for the kinetic duality of 3FGL. These results partially explain the toxic effects of 3FG and are consistent with the presence of a hitherto undetected sorbitol metabolism in locusts.  相似文献   

2.
3.
Various alkaloids having an isoquinoline skeleton from different species of the Annonaceae, Fumariacae, and Aristolochiacae (aporphine, cularine, benzylisoquinoline, and bisbenzylisoquinoline derivatives) were tested for their ability to inhibit in vitro 3H-dopamine uptake by rat striatal dopamine D1 3H-SCH 23390 AND D2 3H-raclopride binding sites. Except for some aporphine derivatives (anonaine [1], norstephalagine [2], isopiline [3]) and some bisbenzylisoquinoline alkaloids (dimethylgrisabine [27], antioquine [28], obaberine [29], isotetrandrine [30]) that displayed affinities of the same order as the reference compounds (nomifensine [38], amineptine [39], dexamphetamine [40]), the other tested products had low, or no, affinity on the 3H-dopamine uptake since, in comparison, its affinity at dopamine D1 3H-SCH 23390 and D2 3H-raclopride binding sites was low. These data suggest that it could be possible to synthesize anonaine-like products displaying intense dopamine-uptake inhibitory properties, which could lead to a potential antidepressant activity.  相似文献   

4.
5.
Since lactate released by glial cells may be a key substrate for energy in neurons, the kinetics for the uptake of L-[U-14C]lactate by cortical synaptic terminals from 7- to 8-week-old rat brain were determined. Lactate uptake was temperature-dependent, and increased by 64.9% at pH 6.2, and decreased by 43.4% at pH 8.2 relative to uptake at pH 7.3. Uptake of monocarboxylic acids was saturable with increasing substrate concentration. Eadie-Hofstee plots of the data gave evidence of two carrier-mediated uptake mechanisms with a high-affinity Km of 0.66 mM and Vmax of 3.66 mM for pyruvate, and a low-affinity system with a Km of 9.9 mM for both lactate and pyruvate and Vmax values of 16.6 and 23.1 nmol/30 s/mg protein for lactate and pyruvate, respectively. Saturable uptake was seen in the presence of 10 mM alpha-cyano-4-hydroxycinnamate. Lactate transport by synaptic terminals was much more sensitive to inhibition by sulfhydryl reagents than transport in astrocytes. Addition of 0.5 and 2 mM mersalyl decreased the uptake of 1 mM lactate by synaptic terminals by 59.3 and 66.37%, respectively. Pyruvate moderately decreased lactate transport, whereas 3-hydroxybutyrate had little effect. Quercetin, an inhibitor of lactate release, had little effect on the content of 14C lactate in synaptic terminals, supporting the concept that the majority of lactate produced within brain is from glial cells. Oxidation of L-[U-14C]lactate by synaptosomes was saturable, and yielded a Km of 1.23 mM and a Vmax of 116 nmol/h/mg protein. Overall the studies show that synaptic terminals from adult brain have a high capacity for transport and oxidation of lactate, consistent with the proposed role for this compound in metabolic trafficking in brain. Furthermore, the data provide kinetic evidence of two carrier-mediated mechanisms for monocarboxylic acid transport by synaptosomes and demonstrate that uptake of lactate by synaptic terminals is regulated differently than transport by astrocytes. Uptake of lactate by synaptic terminals also has differences from the systems described for neurons.  相似文献   

6.
Synaptosomes from normoxic and hypoxic rats were incubated aerobically in the presence and absence of veratridine. In the absence of veratridine, no significant difference was observed between the two types of preparation regarding either ATP/ADP ratio or 14CO2 or [14C]acetylcholine synthesis from D-[U-14C]glucose. However, in the presence of veratridine, significant reductions in the output of 14CO2 and [14C]acetylcholine by synaptosomes from hypoxic rats were apparent. It was concluded that irreversible metabolic lesions occur at the synapse as a result of hypoxia, which are apparent only when the metabolism of the preparation is accelerated to a level comparable with the maximal rate occurring in vivo. The presence of such lesions is further evidenced by the significant reductions in ATP/ADP ratio, 14CO2 output, and [14C]acetylcholine synthesis that occur in synaptosomes from hypoxic rats made anoxic in vitro and permitted to recover. Such decreases are not seen when synaptosomes from normoxic rats are similarly treated.  相似文献   

7.
Adenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) and adenosine 5',5"'-P1,P5-pentaphosphate (Ap5A) are stored in and released from rat brain synaptic terminals. In the present study we investigated the hydrolysis of dinucleotides (Ap4A and Ap5A) in synaptosomes from the cerebral cortex of adult rats. Ap4A and Ap5A, but not Ap3A, were hydrolyzed at pH 7.5 in the presence of 20 mM Tris/HCl, 2.0 mM MgCl2, 10 mM glucose and 225 mM sucrose at 37 degrees C. The disappearance of the substrates measured by FPLC on a mono-Q HR column was both time and protein dependent. Since synaptosome integrity was at least 90% at the end of the assay, hydrolysis probably occurred by the action of an ecto-enzyme. Extracellular actions of adenine dinucleotides at central nervous system terminate due to the existence of ecto-nucleotidases which specifically cleave these dinucleotides. These enzymes in association with an ATP diphosphohydrolase and a 5'-nucleotidase are able to promote the complete hydrolysis of dinucleotides to adenosine in the synaptic cleft.  相似文献   

8.
The perceptual strategies used by 4 orangutans (2 subadults, 2 adults) when choosing the larger of 2 volumes in a Piagetian conservation task were investigated. Three possible perceptual strategies were investigated: (a) direct perceptual estimation of the container's content independent of its shape, (b) use of the spatial and temporal cues provided by the pouring of liquid from one container to another, and (c) ability to initially identify the larger volume and track it across transformations disregarding misleading perceptual cues. Results indicated that the direct perceptual estimation strategy was the best candidate to explain the orangutan's systematic choice of the larger of 2 quantities.  相似文献   

9.
In an effort to characterize putative transport systems of valproic acid (VPA) at the blood-brain barrier, the effects of various substrates and inhibitors of known anion transporters on the equilibrium vessel-to-medium concentration (vessel/medium) ratio of VPA were investigated using isolated rat brain microvessels. The equilibrium vessel/medium ratio of VPA was decreased by the presence of high millimolar concentration of unlabeled VPA, indicating that a saturable transport system was involved in VPA transport from medium to microvessels. Short-chain monocarboxylates such as propionic acid, pyruvic acid, and L-lactic acid did not alter the vessel/medium ratio, whereas medium-chain fatty acids and unsaturated metabolites of VPA significantly inhibited the net transport of VPA. Dicarboxylates, tricarboxylate, and p-aminohippuric acid did not affect VPA accumulation in the brain microvessels. Several anionic drugs including salicylic acid, penicillin G, cefazolin, and probenecid significantly reduced the vessel/medium ratio of VPA. In addition, disulfonate inhibitors of inorganic anion exchangers, SH-group modifying reagent, and metabolic inhibitor showed remarkable inhibitory effects on the net transport of VPA between brain microvessels and medium. These results suggest that VPA may be actively transported through the antiluminal membrane via a carrier-mediated system shared by other anionic drugs.  相似文献   

10.
11.
The localization of epileptogenic foci that are amenable to curative epilepsy surgery may be accomplished by noninvasive surface electroencephalogram (EEG) recordings, clinical observations, computed tomography (CT), magnetic resonance imaging (MRI), and neuropsychologic tests. Other tests, such as invasive EEG, 18F-fluoro-deoxyglucose-positron-emission tomography (FDG-PET or PET) scans, and single-photon-emission computed tomography (SPECT) scans, have also been used at various epilepsy centers to help identify candidates who might benefit from such surgery. Interictal PET scans have demonstrated hypometabolism in areas concordant with the epileptogenic foci indicated by other diagnostic tests such as EEG and MRI. However, PET scans have also shown no abnormality in many patients with EEG-indicated epileptogenic foci; in others, the scans have shown abnormal metabolism in areas that were discordant with the epileptogenic foci. Although substitution of the noninvasive PET scan for the invasive EEG recordings would be desirable, the available data were insufficient to determine whether PET scans might serve as a reliable substitute for EEG. A positive PET scan might contribute independent information for identifying the epileptogenic site but could be noncontributory or confusing when hypometabolism is not seen or is seen in presumably normal brain areas. It is not evident from the data in the literature to what extent confirmatory PET scan findings might contribute to the management of patients with complex partial seizures.  相似文献   

12.
Kava pyrones are pharmacologically active compounds extracted from Piper methysticum Forst. Because kava pyrones were characterized by their anticonvulsive, analgesic and centrally muscle relaxing action, we investigated the influence of (+/-)-kavain, a synthetic kava pyrone, on veratridine-stimulated increase in intrasynaptosomal Na+ concentration ([Na+]i) of rat cerebrocortical synaptosomes. [Na+]i was measured spectrofluorometrically employing SBFI as Na+ sensitive fluorescence dye. Veratridine (5 mumol/I) enhanced basal [Na+]i 6.6-fold from 11.3 to 74.1 mmol/l Na+. Incubation of synaptosomes for 100 sec with (+/-)-kavain was sufficient to reduce dose dependently the stimulated increase of [Na+]i with an IC50 value of 86.0 mumol/l, and almost complete inhibition of Na(+)-channels was attained with 400 mumol/l) reduced veratridine-elevated [Na+]i to 30.4% and 7.9% of control whereas the centrally acting muscle relaxant mephenesin (400 mumol/l) was without any effect. Postapplication of 400 mumol/l (+/-)-kavain or 10 mumol/l TTX immediately diminished veratridine-elevated [Na+]i to nearly basal levels with a half life time of 69.7 and 41.8 sec, respectively. To study the influence of (+/-)-kavain on non stimulated synaptosomes, an increase in [Na+]i was induced by 200 mumol/l ouabain, which enhanced [Na+]i hyperbolically with an initial rate of 18.4 mmol Na+/l min. Preincubation of synaptosomes with 400 mumol/l (+/-)-kavain or 10 mumol/l TTX partly prevented Na(+)-influx for both compounds to the same extent of about 57% of control. The presented data indicate a fast and specific inhibition of voltage-dependent Na(+)-channels by (+/-)-kavain.  相似文献   

13.
14.
BACKGROUND: [18F]2-deoxy-2-fluoroglucose (FDG) is widely used as a tracer for glucose uptake in ischemic heart muscle. We tested the effects of low-flow ischemia and reperfusion on the ratio of tracer/tracee (lumped constant, LC). METHODS AND RESULTS: Isolated working rat hearts were perfused with Krebs-Henseleit buffer containing only glucose 5 mmol/L (group 1) or glucose 5 mmol/L plus oleate 0.4 mmol/L (group 2, fed; group 3, fasted). Dynamic glucose uptake was measured simultaneously with [2-3H]glucose and with FDG. After 20 minutes, coronary flow was reduced by 75% for 30 minutes before it was returned to control conditions for the final 20 minutes. Hexokinase activity in the cytosolic and mitochondrial fractions and tissue metabolites were determined. Rates of glucose uptake were highest when glucose was the only substrate. Glucose uptake, FDG uptake, and the LC increased during ischemia only in group 3. There was no change of these parameters during ischemia in groups 1 and 2. FDG uptake decreased significantly with reperfusion in groups 2 and 3, and there was a striking fall in the LC (from >1.0 to <0.2, P<.001). The fall in the LC was associated with a significant increase in intracellular free glucose. Neither ischemia nor reperfusion affected the kinetic properties of hexokinase. CONCLUSIONS: FDG profoundly underestimates glucose uptake during reperfusion in the presence of fatty acids. In the fasted state, however, FDG overestimates glucose uptake during ischemia. The results indicate limitations in the use of FDG to quantify myocardial glucose uptake in human heart.  相似文献   

15.
Agmatine (decarboxylated arginine), an endogenous ligand for imidazoline receptors, has been identified in brain where it is synthesized from arginine by arginine decarboxylase. Here we report a mechanism for the transport of agmatine into rat brain synaptosomes. The uptake of agmatine was energy- and temperature-dependent and saturable with a Km of 18.83 +/- 3.31 mM and a Vmax of 4.78 +/- 0.67 nmol/mg of protein/min. Treatment with ouabain (Na+,K+-ATPase inhibitor) or removal of extracellular Na+ did not attenuate the uptake rate. Agmatine transport was not inhibited by amino acids, polyamines, or monoamines, indicating that the uptake is not mediated by any amino acid, polyamine, or monoamine carriers. When we examined the effects of some ion-channel agents on agmatine uptake, only Ca2+-channel blockers inhibited the uptake, whereas a reduction in extracellular Ca2+ increased it. In addition, some imidazoline drugs, such as idazoxan and phentolamine, were strong noncompetitive inhibitors of agmatine uptake. Thus, a selective, Na+-independent uptake system for agmatine exists in brain and may be important in regulating the extracellular concentration of agmatine.  相似文献   

16.
Defects created after excision of abdominal wall tumors pose a challenge to the reconstructive surgeon. The task is made more difficult by the wide variety of flaps available for this purpose. We present a simple classification of abdominal wall defects and our choice of flaps for reconstruction. The abdomen was divided into six regions for the purpose of reconstruction. The deep inferior epigastric artery flap alone is the flap of choice for central supraumbilical defects. For lateral supraumbilical defects the latissimus dorsi flap fulfills all the requirements. Infraumbilical defects, central or lateral, are ideally suited to reconstruction by unilateral or bilateral tensor fascia lata flaps. Patients representing each scenario are presented.  相似文献   

17.
18.
Horseradish peroxidase (HRP) was introduced directly into the cerebral cortex of adult rats, which were allowed to survive for 60 min before perfusion fixation. After the tissue had been incubated to demonstrate HRP at the LM and EM levels, blocks of cortical tissue were taken at varying distances from the injection site. These eight blocks of tissue constituted a time sequence for HRP diffusion. Qualitative examination of the presynaptic terminals showed that the most commonly encountered profiles are the plain synaptic vesicles, many of which accumulate tracer. In some terminals labelled vesicles are "lined-up" in tubular fashion. Other profiles commonly labelled are coated vesicles, tubular and vacuolar cisternae, and plain and coated pinocytotic vesicles. Quantitative analyses based on the number of terminals containing labelled profiles demonstrate an early rise in the rate of labelling of both plain synaptic vesicles and coated vesicles, after which synaptic vesicle labelling rises slowly towards a plateau. By contrast, there is a late parallel increase in the rate of labelling of coated vesicles and cisternae. A more detailed analysis, based on the actual numbers of labelled and total profiles within each presynaptic terminal, highlight early and late periods of rapid labelling for plain synaptic vesicles, coated vesicles and cisternae. A further aspect of HRP incorporation studied, concerns its uptake into four delineated regions of the presynaptic terminal. Our data indicate that membrane uptake into the presynaptic terminal is accomplished mainly via coated vesicles, although plain synaptic vesicles may also be involved. Coated vesicles, in turn, appear to give rise directly to plain synaptic vesicles, with some coalescing to produce vacuolar cisternae. The latter are involved in a two-way interchange of membrane with tubular cisternae, plain synaptic vesicles and coated vesicles. An additional source of plain synaptic vesicles are the tubular cisternae. Exocytosis of plain synaptic vesicles constitutes the mechanism by which transmitter is released from the presynaptic terminal.  相似文献   

19.
20.
Water-soluble inositol metabolites were separated by anion-exchange chromatography in order to determine whether or not gamma-hexachlorocyclohexane (gamma-HCH, lindane) and related compounds affect phosphatidylinositol hydrolysis in rat brain cortex slices. Hydrolysis was increased by delta- and gamma-HCH, while alpha- and beta-HCH were inactive. Muscarinic receptor stimulation of rat cortical slices with carbachol increases inositol phosphates formation. The combined effect of carbachol and the hexachlorocyclohexane isomers together were approximately equal to the sum of the effect of each one separately. The results suggest that lindane stimulates phosphoinositide phospholipase C and/or inhibits the phosphatases implicated in dephosphorylation of inositol phosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号