首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
两种呋咱环叠氮化合物的合成   总被引:2,自引:0,他引:2  
合成出 5 ,5′ 双 (叠氮甲基 ) 3,3′ 双 (1,2 ,4 口恶二唑 ) (Ⅰ )和双 (叠氮乙酰亚胺基 )氧化偶氮呋咱 (Ⅱ ) ,利用元素分析、红外、核磁共振谱和质谱对两种化合物进行了结构鉴定 .通过将叠氮基引入呋咱衍生物中 ,得到了高氮含量、高生成焓的含能化合物 ,这两种化合物均有较高的密度 ,其中化合物Ⅰ为低熔点叠氮化物 ,可作为含能增塑剂应用  相似文献   

2.
3,3-二氯-4,4-二氨基二苯基甲烷合成条件优化   总被引:1,自引:0,他引:1  
通过在硫酸水溶液和邻氯苯胺(A)的体系中加入多聚甲醛(B),研究硫酸质量分数、反应时间、反应升温时间等条件对3,3二氯-4,4-二氨基二苯基甲烷的合成产率的影响.通过单因素与正交实验确定了当硫酸的质量分数为40%,反应时间为150min,升温时间为100min时为合成3,3-二氯14,4二氨基二苯基甲烷的最佳工艺条件.在最佳条件下,其产率可达到90%  相似文献   

3.
以4-氯苯甲醛、丙二酸为起始原料,以氨气为氨化剂在高压釜内反应得目标产物3-氨基-3-(4-氯苯基)丙酸.研究了工艺条件对反应的影响.其适宜的合成工艺条件:在反应温度95℃,氨气压力控制在0.6~0.8MPa下,选用乙醇为溶剂,哌啶为催化剂,催化剂用量为5%(质量分数),4-氯苯甲醛和丙二酸的物质的量比为1∶1.4,反应10h,收率可达79.4%,产品熔点为222.5~222.7℃.该方法以氨气为氮化剂不仅原料成本比乙酸铵低,而且产品纯度也更高,更容易实现大规模工业化生产.  相似文献   

4.
对2-羟基-3-氨基苯乙酮的合成工艺条件及装置作了研究改进.改进后吡啶用量减少了85%.Pd/C催化剂循环使用和各类溶剂回收套用.减少了环境污染,降低了成本.放大试验结果稳定.产品总收率达文献值。  相似文献   

5.
二苯胺法合成4-氨基二苯胺的工艺研究   总被引:4,自引:0,他引:4  
研究了由二苯胺为原料合成4-氨基二苯胺的工艺路线及影响因素,得出了最佳工艺条件n(NaNO2)∶n(二苯胺)=1.1∶1,反应温度为20~25 ℃,反应时间为5 h;n(对亚硝基二苯胺)∶n(Na2S*9H2O)=1∶2,反应温度为50~55 ℃,反应时间为4 h,产品收率大于98%,纯度大于99%.该工艺避免了回收溶剂甲苯采用蒸馏的方法,减少了能耗,降低了成本.  相似文献   

6.
研究了由二苯胺为原料合成4-氨基二苯胺的工艺路线及影响因素,得出了最佳工艺条件:n(NaNO2)∶n(二苯胺)=1 1∶1,反应温度为20~25℃,反应时间为5h;n(对亚硝基二苯胺)∶n(Na2S·9H2O)=1∶2,反应温度为50~55℃,反应时间为4h,产品收率大于98%,纯度大于99%。该工艺避免了回收溶剂甲苯采用蒸馏的方法,减少了能耗,降低了成本。  相似文献   

7.
研究了4-甲基-2-肼基苯并噻唑改进合成工艺.邻甲基苯基硫脲(简称苯基硫脲)溶于二氯乙烷中,然后通入氯气,生成4-甲基-2-氨基苯并噻唑盐酸盐(简称AMBT盐酸盐).然后以AMBT、AMBT盐酸盐和水合肼为原料,乙二醇为反应溶剂,通过取代反应合成4-甲基-2-肼基苯并噻唑.产品及重要中间体经红外光谱、核磁共振确定并经气相色谱测定产品纯度为98.2%,收率达到90.3%.综合考虑了影响反应的因素:成环反应试剂的选择、投料比、溶剂量、反应时间和反应温度.最佳反应条件:采用氯气来替代SOCl2或KBr,AMBT与水合肼的摩尔比为1∶6.5,乙二醇15 mL,取代反应时间为7 h,反应温度115℃.该路线工艺条件温合,操作简单,产品含量高,具有较好的社会效益和经济效益,适合工业化生产.  相似文献   

8.
4-二甲氨基吡啶合成工艺条件优化   总被引:4,自引:0,他引:4  
以吡啶为原料,乙酸乙酯做溶剂,两步法合成高效酰化催化剂4-二甲氨基吡啶.采用正交实验法考察了各种因素对反应的影响,得到了最佳合成条件,该法具有原料易得,条件温和等优点。  相似文献   

9.
通过2,6-二氨基吡啶和三硝基二氯苯的缩合,再经过硝化、叠氮化、脱氮环化反应合成并鉴定了题称化合物.  相似文献   

10.
以4-硝基-N-[3-(2-羟乙基)砜基]苯基苯甲酰胺和氯磺酸为主要原料,经过加氢和酯化2步反应合成了4-氨基-N-[3-(2-羟乙基)砜硫酸酯]苯基苯甲酰胺。实验表明,加氢反应的较佳条件:4-硝基-N-[3-(2-羟乙基)砜基]苯基苯甲酰胺(质量,g)与甲醇(体积,mL)比1∶18,Raney-Ni催化剂质量分数40%,氢气压0.4~0.6 MPa,反应温度60℃,反应时间80 min,收率86%。酯化反应的较佳条件:n(4-氨基-N-[3-(2-羟乙基)砜基]苯基苯甲酰胺)∶n(氯磺酸)=1∶1.05,反应温度40℃,反应时间8 h,收率92%。产物及中间体的结构经过了IR1、H NMR表征,确定为目标产物。  相似文献   

11.
以分散蓝2BLN(C.I.分散蓝56)生产过程中水解工序的废液为原料,经回收得2,4二硝基苯粗 品,然后从硫氢化钠作还原剂,于对70~75℃ , pH=7~8条件下将其还原、精制,从而制得高纯度的2~ 氨基-4-硝基苯酚.总收率达68%,产品纯度≥98%.  相似文献   

12.
对氨基水杨酸为原料经甲基化、硫氰化、水解、乙基化合成了抗精神病药物氨磺必利的关键中间体4-氨基-2-甲氧基-5-乙硫基苯甲酸,此方法操作简单,易控制,后处理方便,总收率达65%。目标化合物结构经IR、1HNMR、MS确证。  相似文献   

13.
利用铁粉和水之间水热反应合成Fe3O4纳米晶。XRD、FTIR、TEM和TG-DSC等分析测试结果表明:采用该法,在无任何表面活性剂或模板存在的情况下,在150℃,24h合成了平均厚度为82nm的片状Fe3O4纳米结构;在180℃,10h合成了平均厚度为96 nm的片状Fe3O4纳米结构;在180℃,24h合成了直径大小为35~47 nm和长度为190~714 nm的枝晶状Fe3O4纳米晶。最后,探讨了Fe3O4纳米晶的水热合成机理。  相似文献   

14.
分别采用热丝辅助反应溅射和等离子体增强热丝化学气相沉积的制备方法,制备出含有β-C3N4晶相的CNx薄膜.本文将重点报道CNx薄膜的结构与形貌特点,并进一步阐述制备参数与CNx薄膜中β-C3N4结晶成分的关系.  相似文献   

15.
以电镀污泥为掺杂源水热合成掺杂的Fe3O4,实现电镀污泥的资源化与自净化.选择尿素作为Fe3+Fe3+沉淀剂,通过分析电镀污泥掺杂量、反应时间及反应温度对水热合成Fe3O4的影响,确定最佳试验条件为:铁源与电镀污泥质量比4:1,反应时间4 h,反应温度160℃.研究结果同时表明,在掺杂Fe3O4中,铜的浸出毒性较大,镍次之,但锌、铁、铬的毒性浸出在pH值为3~10范围内低于美国固体废物毒性浸出(TCLP)方法的标准.因此,含铜量高的电镀污泥不适于用作掺杂源.应优先考虑含锌、铬污泥.水热合成的掺杂电镀污泥的Fe3O4,其粉体颜色呈黑色,磁性强,分散性好,粒度细小,分布较为均匀.  相似文献   

16.
以双乙烯酮为原料 ,经过溴化、酯化、肟化、环合等步骤合成了去甲基氨噻肟酸烯丙醇酯。当溴化温度 - 2 3~ - 2 0℃ ,溴化时间 2h ;酯化温度 - 1 0~ - 5℃ ;肟化温度0~ 5℃ ,肟化时间 8h ;环合温度 0~ 5℃ ,环合时间 6h ;n(双乙烯酮 )∶n(溴 )∶n(烯丙醇 )∶n (肟化剂 )∶n(硫脲 ) =1∶1 .0 5∶1∶1 5∶1时 ,四步反应的总收率达到 49 3% ,比文献报道的高 1 2 %。  相似文献   

17.
在微波辐射下,使用醋酸铁作为催化剂,冰醋酸作为溶剂,考察了过氧化氢氧化二苯甲烷的反应,研究表明用醋酸铁作催化剂不仅可以使二苯甲烷的转化率增加,而且可使反应速度加快,相比而言,当醋酸铁用量为0.4mmol时二苯甲酮的收率最高.另外,溶剂冰醋酸在反应中起着重要的作用,当不使用冰醋酸时,反应不能进行.在微波功率为365W,w(H2O2)为30%和冰醋酸的用量分别为5和10mL时,用0.4mmol的醋酸铁作为催化剂,反应20min二苯甲酮的收率可达87.7%,此合成方法所用氧化剂清洁无污染,反应时间短且后处理简单,提供了一种绿色合成二苯甲酮的方法。  相似文献   

18.
设计并合成了一种重要药物中间体4-氨基-2-甲基-1-丁醇。以异丁烯醇、乙酰氯为初始原料,经酯化反应、氢甲酰化反应、胺化还原反应和水解反应制得目标产物。经优化后的反应条件如下:氢甲酰化反应中膦配体/铑催化剂的摩尔比为4∶1,反应温度为120 ℃,合成气(CO/H2)压力为3 MPa,反应得到中间体醛;胺化还原反应中兰尼镍/底物醛的质量比为1∶20,H2压力为0.9 MPa,反应得到中间体胺。最后,通过核磁共振氢谱对产物进行了表征,确认目标产物为4-氨基-2-甲基-1-丁醇。产物的总收率为62%。该合成路线原料易得,条件温和,流程简便,有实现工业化生产的价值。  相似文献   

19.
介绍了以廉价丙醛制备3,4-己二酮的合成路线。以催化量的噻唑盐和助催化剂无机碱碳酸钠催化丙醛偶联,以90%的收率制得丙偶姻;丙偶姻在浓硫酸存在下,用质量分数30%H2O2/FeSO4·7H2O氧化得到85%收率的3,4-己二酮。气相色谱标准样品对照法确定了产物的结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号