首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We study the motion of current carrying charged string loops in the Reissner–Nordström black hole background combining the gravitational and electromagnetic field. Introducing new electromagnetic interaction between central charge and charged string loop makes the string loop equations of motion to be non-integrable even in the flat spacetime limit, but it can be governed by an effective potential even in the black hole background. We classify different types of the string loop trajectories using effective potential approach, and we compare the innermost stable string loop positions with loci of the charged particle innermost stable orbits. We examine string loop small oscillations around minima of the string loop effective potential, and we plot radial profiles of the string loop oscillation frequencies for both the radial and vertical modes. We construct charged string loop quasi-periodic oscillations model and we compare it with observed data from microquasars GRO 1655-40, XTE 1550-564, and GRS 1915+105. We also study the acceleration of current carrying string loops along the vertical axis and the string loop ejection from RN black hole neighbourhood, taking also into account the electromagnetic interaction.  相似文献   

3.
This work starts by generalizing in a gravitational field the fundamental quantum mechanical commutation relations between the coordinates of a charged test particle and its momentum. Assuming that the components of the momentum of this test charge obey a noncommutative algebra in the presence of an electromagnetic field, it is proved that the commutator can be identified with the electromagnetic field tensor. Using these results, the equation of motion of this charged object in the presence of both the electromagnetic and gravitational fields is derived from their field equations. In this work, the laws of motion of a particle in the electromagnetic and gravitational fields has been unified with the field equations. Although the field equations themselves are not directly unified, this work strongly suggests that the scheme may act as a possible framework for the unification of at least gravitational and electromagnetic interactions.  相似文献   

4.
A consistent derivation of the operator form for the solution of the wave equation for a charged particle in an arbitrary external electromagnetic field is presented. The expressions obtained can be used for solving any problems in quantum electrodynamics in external fields in the framework of the semiclassical operator method. The peculiarities of the application of this method are demonstrated for the small-angle elastic scattering of a high-energy photon in an arbitrary localized electric field. The problem is solved for the first time without presuming the central symmetry of the external field potential.  相似文献   

5.
We fulfill the detailed analysis of coupling the charged bosonic higher-spin fields to external constant electromagnetic field in first order in external field strength. Cubic interaction vertex of arbitrary massive and massless bosonic higher-spin fields with external field is found. Construction is based on deformation of free Lagrangian and free gauge transformations by terms linear in electromagnetic field strength. In massive case a formulation with Stueckelberg fields is used. We begin with the most general form of deformations for Lagrangian and gauge transformations, admissible by Lorentz covariance and gauge invariance and containing some number of arbitrary coefficients, and require the gauge invariance of the deformed theory in first order in strength. It yields the equations for the coefficients which are exactly solved. As a result, the complete interacting Lagrangian of arbitrary bosonic higher-spin fields with constant electromagnetic field in first order in electromagnetic strength is obtained. Causality of massive spin-2 and spin-3 fields propagation in the corresponding electromagnetic background is proved.  相似文献   

6.
Analogs for Maxwell’s equations with fractional derivatives are obtained using the concepts of an effective current and the velocity of a charged particle in a medium. The calibration invariance is considered and a diffusion-wave equation is found and analyzed for scalar and vector potentials. It is shown that the stochastic nature of charged particle motion in a medium influences the dynamics of an electromagnetic field.  相似文献   

7.
The relativistic equations of motion of the interaction of a charged particle with an electromagnetic wave of elliptic polarization propagating along the direction of an external and constant magnetic field are solved in exact form. The method of solution is straight forward and allows to recover results previously reported in the literature  相似文献   

8.
An algebraic form of the energy momentum tensor of the electromagnetic field is derived in terms of two scalars and two mutually orthogonal vector fields. Upon inserting this tensor into the field equations, solutions of the co-determined Einstein-Maxwell equations are obtained. The line element used is that corresponding to a conformal flat universe, whose form is then uniquely determined by the field equations. The case of a charged fluid is also considered and it is found that the particular form of the velocity field chosen limits the choice of the possible equation of state connecting the pressure and density distributions.  相似文献   

9.
The equations alternative to those of dynamics of a point charged particle are derived. In this case, the holonomic vector field of a special type represents the momentum, and the symmetric tensor is the external field. A class of electromagnetic fields which can be mechanically interpreted in terms of deformation theory is also considered.  相似文献   

10.
《Nuclear Physics B》1988,301(2):224-246
The relationship between sigma model β-functions and string theory scattering amplitudes is proved. We derive our results for the closed bosonic string using the weak field expansion around the flat space. The equations of motion for all the background fields, including the heavy fields are considered. We show that the effective equations for the light fields are obtained by integrating out the heavy fields. It is shown that the contributions to the β-functions come from the boundary of moduli space on a punctured Riemann surface. String loop corrections to the equations of motion are also studied.  相似文献   

11.
An efficient numerical method has been devised for the study of wave circulated by a magnetised ferrite sphere. It is a finite-difference time-domain formulation that incorporates Mur's absorbing boundary conditions and a perfectly matched layer. The electromagnetic fields inside the ferrite body are calculated using special updating equations derived from the equation of motion of the magnetization vector and Maxwell's curl equations in consistency. The electromagnetic fields inside ferrite and the power-density distribution on the ferrite's surface normal to the bias external magnetic field are obtained in a wide frequency band with a single time domain run. It is observed that an incident plane wave would circulate around the magnetised ferrite body in an open space as if the ferrite were placed inside a waveguide / microstrip junction circulators.  相似文献   

12.
The matrix 8-component Dirac-like form of the P-odd equations for boson fields of spin 1 and 0 are obtained and the symmetry group of the equations is derived. We found exact solutions of the field equation for vector particles with arbitrary electric and magnetic moments in external constant and uniform electromagnetic fields. The differential probability of pair production of vector particles with electric dipole moments and anomalous magnetic moments by an external constant and uniform electromagnetic field has been found using exact solutions. We have calculated the imaginary and real parts of the electromagnetic field Lagrangian that takes into account the vacuum polarization of vector particles. Received: 14 April 2001 / Revised version: 13 July 2001 / Published online: 19 September 2001  相似文献   

13.
The electrodynamics and dispersion properties of a magnetized dusty plasma containing elongated and rotating charged dust grains are examined. Starting from an appropriate Lagrangian for dust grains, a kinetic equation for the dust grain and the corresponding equations of motion are derived. Expressions for the dust charge and dust current densities are obtained with the finite size (the dipole moment) of elongated and rotating dust grains taken into account. These charge and current densities are combined with the Maxwell-Vlasov system of equations to derive dispersion relations for the electromagnetic and electrostatic waves in a dusty magnetoplasma. The dispersion relations are analyzed to demonstrate that the dust grain rotation introduces new classes of instabilities involving various low-frequency waves in a dusty magnetoplasma. Examples of various unstable low-frequency waves include the electron whistler, the dust whistler, dust cyclotron waves, AlfvÉn waves, electromagnetic ion-cyclotron waves, as well as lower-hybrid, electrostatic ion cyclotron, modified dust ion-acoustic waves, etc. Also found is a new type of unstable waves whose frequency is close to the dust grain rotation frequency. The present results should be useful in understanding the properties of low-frequency waves in cosmic and laboratory plasmas that are embedded in an external magnetic field and contain elongated and rotating charged dust grains.  相似文献   

14.
15.
Markus Lazar 《Physics letters. A》2010,374(30):3092-3098
We investigate the nonuniform motion of a straight screw dislocation in infinite media in the framework of the translational gauge theory of dislocations. The equations of motion are derived for an arbitrarily moving screw dislocation. The fields of the elastic velocity, elastic distortion, dislocation density and dislocation current surrounding the arbitrarily moving screw dislocation are derived explicitly in the form of integral representations. We calculate the radiation fields and the fields depending on the dislocation velocities.  相似文献   

16.
The Lagrangian and Hamiltonian formulations for the relativistic classical dynamics of a charged particle with dipole moment in the presence of an electromagnetic field are given. The differential conservation laws for the energy-momentum and angular momentum tensors of a field and particle are discussed. The Poisson brackets for basic dynamic variables, which form a closed algebra, are found. These Poisson brackets enable us to perform the canonical quantization of the Hamiltonian equations that leads to the Dirac wave equation in the case of spin 1/2. It is also shown that the classical limit of the squared Dirac equation results in equations of motion for a charged particle with dipole moment obtained from the Lagrangian formulation. The inclusion of gravitational field and non-Abelian gauge fields into the proposed formalism is discussed.Received: 4 June 2005, Published online: 27 July 2005  相似文献   

17.
Equations describing the envelopes of an electron beam in a modified betatron and an l=2 stellatron are obtained on the basis of a self-similar solution of the dynamic equations of a charged fluid. It is shown that the poloidal motion of a beam caused by a toroidal magnetic field consists of rotation of the beam as a whole and internal movement of the fluid with elliptical current lines.  相似文献   

18.
We have investigated the effects of acceleration of a charged particle on its Cerenkov emission and ionization-losses. We have considered the accelerated motion of a charged particle in an infinite medium with the acceleration parallel to the direction of its motion. We have used the method of Fourier transforms to solve the Maxwell's equations with appropriate current and charge-densities to find electromagnetic fields and hence the force experienced by the incident charge due to its interaction with the medium (dielectric or plasma). The results obtained are general and applicable to any acceleration. In the approximations of ‘small acceleration’ and ‘small interaction time’, we have solved the wave equations and determined electromagnetic potentials. It is found that the acceleration of the charged particle strongly changes both its ionization-loss and Cerenkov emission.  相似文献   

19.
We consider the motion of a spinning relativistic particle in external electromagnetic and gravitational fields to first order in the external field but to arbitrary order in the spin. The influence of the spin on the particle trajectory is properly accounted for by describing the spin noncovariantly. Specific calculations are performed through second order in the spin. A simple derivation is presented for the gravitational spin-orbit and spin-spin interactions of a relativistic particle. We discuss the gravimagnetic moment (GM), a particular spin effect in general relativity. We show that for a Kerr black hole the gravimagnetic ratio, i.e., the coefficient of the GM, equals unity (just as the gyromagnetic ratio equals 2 for a charged Kerr hole). The equations of motion obtained for a spinning relativistic particle in an external gravitational field differ substantially from the Papapetrou equations. Zh. éksp. Teor. Fiz. 113, 1537–1557 (May 1998)  相似文献   

20.
Examples of equations of motion in classical relativistic mechanics are studied: the equations of motion of a charged spinning particle moving in a space-time (with or without torsion) in the presence of an electromagnetic field are derived via Souriau presymplectic reduction. Then, the extension of Souriaus ideas to Lagrangian field theory due to Witten, Crnkovi, Zuckerman is reviewed using the variational bicomplex, the basic properties of the Lund–Regge equations describing the motion of a string interacting with a scalar field and moving in Minkowski spacetime are recalled, and a symplectic structure for their space of solutions is found.This revised version was published online in April 2005. The publishing date was inserted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号