共查询到20条相似文献,搜索用时 22 毫秒
1.
Khaldoon O. Al-Nosairy Marc Horbrügger Sven Schippling Markus Wagner Aiden Haghikia Marc Pawlitzki Michael B. Hoffmann 《International journal of molecular sciences》2021,22(7)
The retinal ganglion cells (RGC) may be considered an easily accessible pathophysiological site of degenerative processes in neurological diseases, such as the RGC damage detectable in multiple sclerosis (MS) patients with (HON) and without a history of optic neuritis (NON). We aimed to assess and interrelate RGC functional and structural damage in different retinal layers and retinal sites. We included 12 NON patients, 11 HON patients and 14 healthy controls for cross-sectional multifocal pattern electroretinography (mfPERG) and optical coherence tomography (OCT) measurements. Amplitude and peak times of the mfPERG were assessed. Macula and disc OCT scans were acquired to determine macular retinal layer and peripapillary retinal nerve fiber layer (pRNFL) thickness. In both HON and NON patients the foveal N2 amplitude of the mfPERG was reduced compared to controls. The parafoveal P1 peak time was significantly reduced in HON only. For OCT, parafoveal (pfGCL) and perifoveal (pGCL) ganglion cell layer thicknesses were decreased in HON vs. controls, while pRNFL in the papillomacular bundle sector (PMB) showed reductions in both NON and HON. As the mfPERG derived N2 originates from RGC axons, these findings suggest foveal axonal dysfunction not only in HON, but also in NON patients. 相似文献
2.
Zuming Zhang Zihui Xu Fa Yuan Kangxin Jin Mengqing Xiang 《International journal of molecular sciences》2021,22(19)
It is difficult to regenerate mammalian retinal cells once the adult retina is damaged, and current clinical approaches to retinal damages are very limited. The introduction of the retinal organoid technique empowers researchers to study the molecular mechanisms controlling retinal development, explore the pathogenesis of retinal diseases, develop novel treatment options, and pursue cell/tissue transplantation under a certain genetic background. Here, we revisit the historical background of retinal organoid technology, categorize current methods of organoid induction, and outline the obstacles and potential solutions to next-generation retinal organoids. Meanwhile, we recapitulate recent research progress in cell/tissue transplantation to treat retinal diseases, and discuss the pros and cons of transplanting single-cell suspension versus retinal organoid sheet for cell therapies. 相似文献
3.
Robert J. Rabelo-Fernndez Ginette S. Santiago-Snchez Rohit K. Sharma Abiel Roche-Lima Kelvin Carrasquillo Carrion Ricardo A. Noriega Rivera Blanca I. Quiones-Díaz Swetha Rajasekaran Jalal Siddiqui Wayne Miles Yasmarie Santana Rivera Fatima Valiyeva Pablo E. Vivas-Mejia 《International journal of molecular sciences》2022,23(1)
4.
Magorzata Wichrowska Sawomir Liberski Anna Rzeszotarska Przemysaw Wichrowski Jarosaw Kocicki 《International journal of molecular sciences》2023,24(1)
The main aim of this study was to characterize the retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) thickness in the macular area eyes affected by wet age-related macular degeneration (wAMD) treated with anti-VEGF and compare the results with the control of fellow untreated eyes affected by early stages of dry age-related macular degeneration (dAMD). Additionally, we aimed to estimate if the number of injections received and other factors, including age, best-corrected visual acuity (BCVA), or sex, may affect the differences in the obtained measurements of retinal nerve fiber layer thickness. We prospectively included 106 eyes of 53 patients with unilateral wet age-related macular degeneration. The fellow eyes with non-advanced dry age-related macular degeneration served as a control group in a cross-sectional study. RNFL and GCL in the macular region were evaluated using optical coherence tomography, with outcomes expressed as differences in the thickness of both examined layers between the study and control groups. We found thinner GCL in wAMD vs. dAMD (p < 0.001). In turn, the RNFL layer did not show any statistically significant differences between the two groups (p = 0.409). Similarly, we found a statistically significant correlation between the number of injections and the layer thickness (p = 0.106). Among all assessed parameters, age over 73 was the only factor significantly affecting the thickness of the retinal nerve fiber layer in both groups (p = 0.042). The morphology of the inner layers of the retina in dry and wet AMD seems to differ, possibly due to differences in the etiopathogenesis of these two forms of the disease. In our study, the retinal ganglion cell layer was thinner in the treated vs. fellow eye (with dry AMD), while the nerve fiber layer was not significantly different between the groups. The number of anti-VEGF injections had no effect on the thickness of the macular nerve fiber layer. 相似文献
5.
6.
Gloria Roberti Lucia Tanga Manuele Michelessi Luciano Quaranta Vincenzo Parisi Gianluca Manni Francesco Oddone 《International journal of molecular sciences》2015,16(12):28401-28417
Cytidine 5′-diphosphocholine or citicoline is an endogenous compound that acts in the biosynthetic pathway of phospholipids of cell membranes, particularly phosphatidylcholine, and it is able to increase neurotrasmitters levels in the central nervous system. Citicoline has shown positive effects in Parkinson’s disease and Alzheimer’s disease, as well as in amblyopia. Glaucoma is a neurodegenerative disease currently considered a disease involving ocular and visual brain structures. Neuroprotection has been proposed as a valid therapeutic option for those patients progressing despite a well-controlled intraocular pressure, the main risk factor for the progression of the disease. The aim of this review is to critically summarize the current evidence about the effect of citicoline in glaucoma. 相似文献
7.
8.
Ciriaco Corral-Domenge Pedro de la Villa Alicia Mansilla Francisco Germain 《International journal of molecular sciences》2022,23(8)
The retina is part of the central nervous system, its analysis may provide an idea of the health and functionality, not only of the retina, but also of the entire central nervous system, as has been shown in Alzheimer’s or Parkinson’s diseases. Within the retina, the ganglion cells (RGC) are the neurons in charge of processing and sending light information to higher brain centers. Diverse insults and pathological states cause degeneration of RGC, leading to irreversible blindness or impaired vision. RGCs are the measurable endpoints in current research into experimental therapies and diagnosis in multiple ocular pathologies, like glaucoma. RGC subtype classifications are based on morphological, functional, genetical, and immunohistochemical aspects. Although great efforts are being made, there is still no classification accepted by consensus. Moreover, it has been observed that each RGC subtype has a different susceptibility to injury. Characterizing these subtypes together with cell death pathway identification will help to understand the degenerative process in the different injury and pathological models, and therefore prevent it. Here we review the known RGC subtypes, as well as the diagnostic techniques, probes, and biomarkers for programmed and unprogrammed cell death in RGC. 相似文献
9.
Stefania Vernazza Francesco Oddone Sara Tirendi Anna Maria Bassi 《International journal of molecular sciences》2021,22(15)
Retinal ganglion cells (RGCs) are a population of neurons of the central nervous system (CNS) extending with their soma to the inner retina and with their axons to the optic nerve. Glaucoma represents a group of neurodegenerative diseases where the slow progressive death of RGCs results in a permanent loss of vision. To date, although Intra Ocular Pressure (IOP) is considered the main therapeutic target, the precise mechanisms by which RGCs die in glaucoma have not yet been clarified. In fact, Primary Open Angle Glaucoma (POAG), which is the most common glaucoma form, also occurs without elevated IOP. This present review provides a summary of some pathological conditions, i.e., axonal transport blockade, glutamate excitotoxicity and changes in pro-inflammatory cytokines along the RGC projection, all involved in the glaucoma cascade. Moreover, neuro-protective therapeutic approaches, which aim to improve RGC degeneration, have also been taken into consideration. 相似文献
10.
Glaucoma, the leading cause of irreversible blindness, is a heterogeneous group of diseases characterized by progressive loss of retinal ganglion cells (RGCs) and their axons and leads to visual loss and blindness. Risk factors for the onset and progression of glaucoma include systemic and ocular factors such as older age, lower ocular perfusion pressure, and intraocular pressure (IOP). Early signs of RGC damage comprise impairment of axonal transport, downregulation of specific genes and metabolic changes. The brain is often cited to be the highest energy-demanding tissue of the human body. The retina is estimated to have equally high demands. RGCs are particularly active in metabolism and vulnerable to energy insufficiency. Understanding the energy metabolism of the inner retina, especially of the RGCs, is pivotal for understanding glaucoma’s pathophysiology. Here we review the key contributors to the high energy demands in the retina and the distinguishing features of energy metabolism of the inner retina. The major features of glaucoma include progressive cell death of retinal ganglions and optic nerve damage. Therefore, this review focuses on the energetic budget of the retinal ganglion cells, optic nerve and the relevant cells that surround them. 相似文献
11.
12.
Sven Schnichels Maximilian Schultheiss Patricia Klemm Matthias Blak Thoralf Herrmann Marion Melchinger Karl-Ulrich Bartz-Schmidt Marina Lscher Günther Zeck Martin Stehphan Spitzer Jos Hurst 《International journal of molecular sciences》2021,22(19)
The retina is a complex neurological tissue and is extremely sensitive to an insufficient supply of oxygen. Hypoxia plays a major role in several retinal diseases, and often results in the loss of cells that are essential for vision. Cyclosporine A (CsA) is a widely used immunosuppressive drug. Furthermore, treatment with CsA has neuroprotective effects in several neurologic disorders. No data are currently available on the tolerated concentration of CsA when applied to the retina. To reveal the most effective dose, retinal explants from rat eyes were exposed to different CsA concentrations (1–9 µg/mL). Immunohistochemistry with brain-specific homeobox/POU domain protein 3a (Brn3a) and TUNEL staining was performed to determine the percentage of total and apoptotic retinal ganglion cells (RGCs), as well as the responses of micro- and macroglial cells. Furthermore, optical coherence tomography (OCT) scans were performed to measure the changes in retinal thickness, and recordings with multielectrode array (MEA) were performed to evaluate spontaneous RGC spiking. To examine the neuroprotective effects, retinas were subjected to a hypoxic insult by placing them in a nitrogen-streamed hypoxic chamber prior to CsA treatment. In the biocompatibility tests, the different CsA concentrations had no negative effect on RGCs and microglia. Neuroprotective effects after a hypoxic insult on RGCs was demonstrated at a concentration of 9 µg/mL CsA. CsA counteracted the hypoxia-induced loss of RGCs, reduced the percentage of TUNEL+ RGCs, and prevented a decrease in retinal thickness. Taken together, the results of this study suggest that CsA can effectively protect RGCs from hypoxia, and the administered concentrations were well tolerated. Further in vivo studies are needed to determine whether local CsA treatment may be a suitable option for hypoxic retinal diseases. 相似文献
13.
Ting-Yi Lin Yi-Fen Lai Yi-Hao Chen Da-Wen Lu 《International journal of molecular sciences》2022,23(24)
Erythropoietin (EPO) is a circulating hormone conventionally considered to be responsible for erythropoiesis. In addition to facilitating red blood cell production, EPO has pluripotent potential, such as for cognition improvement, neurogenesis, and anti-fibrotic, anti-apoptotic, anti-oxidative, and anti-inflammatory effects. In human retinal tissues, EPO receptors (EPORs) are expressed in the photoreceptor cells, retinal pigment epithelium, and retinal ganglion cell layer. Studies have suggested its potential therapeutic effects in many neurodegenerative diseases, including glaucoma. In this review, we discuss the correlation between glaucoma and EPO, physiology and potential neuroprotective function of the EPO/EPOR system, and latest evidence for the treatment of glaucoma with EPO. 相似文献
14.
Mi-Lyang Kim Kyung Rim Sung Junki Kwon Go Woon Choi Jin A Shin 《International journal of molecular sciences》2021,22(22)
Glaucoma is an optic neuropathy in which the degeneration of retinal ganglion cells (RGCs) results in irreversible vison loss. Therefore, neuroprotection of RGCs from glaucomatous afflictions is crucial for glaucoma treatment. In this study, we aimed to investigate the beneficial effects of statins in the protection of RGCs using a rat model. Glaucomatous injury was induced in rats by chronic ocular hypertension (OHT) achieved after performing a circumlimbal suture. The rats were given either statins such as simvastatin and atorvastatin or a solvent weekly for 6 weeks. Retina sections underwent hematoxylin and eosin, Brn3a, or cleaved casepase-3 staining to evaluate RGC survival. In addition, modulation of glial activation was assessed. While the retinas without statin treatment exhibited increased RGC death due to chronic OHT, statins promoted the survival of RGCs and reduced apoptosis. Statins also suppressed chronic OHT-mediated glial activation in the retina. Our results demonstrate that statins exert neuroprotective effects in rat retinas exposed to chronic OHT, which may support the prospect of statins being a glaucoma treatment. 相似文献
15.
The goal of neuroprotection in optic neuropathies is to prevent loss of retinal ganglion cells (RGCs) and spare their function. The ideal time window for initiating neuroprotective treatments should be the preclinical period at which RGCs start losing their functional integrity before dying. Noninvasive electrophysiological tests such as the Pattern Electroretinogram (PERG) can assess the ability of RGCs to generate electrical signals under a protracted degenerative process in both clinical conditions and experimental models, which may have both diagnostic and prognostic values and provide the rationale for early treatment. The PERG can be used to longitudinally monitor the acute and chronic effects of neuroprotective treatments. User-friendly versions of the PERG technology are now commercially available for both clinical and experimental use. 相似文献
16.
Joseph M. Holden Sara Al Hussein Al Awamlh Louis-Philippe Croteau Andrew M. Boal Tonia S. Rex Michael L. Risner David J. Calkins Lauren K. Wareham 《International journal of molecular sciences》2022,23(6)
The nitric oxide–guanylyl cyclase-1–cyclic guanylate monophosphate (NO–GC-1–cGMP) pathway is integral to the control of vascular tone and morphology. Mice lacking the alpha catalytic domain of guanylate cyclase (GC1−/−) develop retinal ganglion cell (RGC) degeneration with age, with only modest fluctuations in intraocular pressure (IOP). Increasing the bioavailability of cGMP in GC1−/− mice prevents neurodegeneration independently of IOP, suggesting alternative mechanisms of retinal neurodegeneration. In continuation to these studies, we explored the hypothesis that dysfunctional cGMP signaling leads to changes in the neurovascular unit that may contribute to RGC degeneration. We assessed retinal vasculature and astrocyte morphology in young and aged GC1−/− and wild type mice. GC1−/− mice exhibit increased peripheral retinal vessel dilation and shorter retinal vessel branching with increasing age compared to Wt mice. Astrocyte cell morphology is aberrant, and glial fibrillary acidic protein (GFAP) density is increased in young and aged GC1−/− mice, with areas of dense astrocyte matting around blood vessels. Our results suggest that proper cGMP signaling is essential to retinal vessel morphology with increasing age. Vascular changed are preceded by alterations in astrocyte morphology which may together contribute to retinal neurodegeneration and loss of visual acuity observed in GC1−/− mice. 相似文献
17.
Kitako Tabata Eriko Sugano Akito Hatakeyama Yoshito Watanabe Tomoya Suzuki Taku Ozaki Tomokazu Fukuda Hiroshi Tomita 《International journal of molecular sciences》2021,22(13)
The death of photoreceptor cells is induced by continuous light exposure. However, it is unclear whether light damage was induced in retinal ganglion cells with photosensitivity by transduction of optogenetic genes. In this study, we evaluated the phototoxicities of continuous light exposure on retinal ganglion cells after transduction of the optogenetic gene mVChR1 using an adeno-associated virus vector. Rats were exposed to continuous light for a week, and visually evoked potentials (VEPs) were recorded. The intensities of continuous light (500, 1000, 3000, and 5000 lx) increased substantially after VEP recordings. After the final recording of VEPs, retinal ganglion cells (RGCs) were retrogradely labeled with a fluorescein tracer, FluoroGold, and the number of retinal ganglion cells was counted under a fluorescent microscope. There was no significant reduction in the amplitudes of VEPs and the number of RGCs after exposure to any light intensity. These results indicated that RGCs were photosensitive after the transduction of optogenetic genes and did not induce any phototoxicity by continuous light exposure. 相似文献
18.
HL Chen H Seol KJ Brown H Gordish-Dressman A Hill V Gallo R Packer Y Hathout 《International journal of molecular sciences》2012,13(7):9380-9399
To bring insights into neurofibroma biochemistry, a comprehensive secretome analysis was performed on cultured human primary Schwann cells isolated from surgically resected plexiform neurofibroma and from normal nerve tissue. Using a combination of SDS-PAGE and high precision LC-MS/MS, 907 proteins were confidently identified in the conditioned media of Schwann cell cultures combined. Label free proteome profiling revealed consistent release of high levels of 22 proteins by the four biological replicates of NF1 Schwann cell cultures relative to the two normal Schwann cell cultures. Inversely, 9 proteins displayed decreased levels in the conditioned media of NF1 relative to normal Schwann cells. The proteins with increased levels included proteins involved in cell growth, angiogenesis and complement pathway while proteins with decreased levels included those involved in cell adhesion, plasminogen pathway and extracellular matrix remodeling. Retinoic acid receptor responder protein-1 (RARRES1), previously described as an integral membrane tumor suppressor, was found exclusively secreted by NF1 Schwann cells but not by normal Schwann cells. All-trans retinoic acid modulated secretion of RARRES1 in a dose dependent manner. This study shows altered secretion of key proteins in NF1 derived Schwann cells. The potential implication of these proteins in neurofibroma biology is discussed. 相似文献
19.
Yue Ruan Andreas Patzak Norbert Pfeiffer Adrian Gericke 《International journal of molecular sciences》2021,22(9)
Muscarinic acetylcholine receptors (mAChRs) belong to the superfamily of G-protein-coupled receptors (GPCRs). The family of mAChRs is composed of five subtypes, M1, M2, M3, M4 and M5, which have distinct expression patterns and functions. In the eye and its adnexa, mAChRs are widely expressed and exert multiple functions, such as modulation of tear secretion, regulation of pupil size, modulation of intraocular pressure, participation in cell-to-cell signaling and modula-tion of vascular diameter in the retina. Due to this variety of functions, it is reasonable to assume that abnormalities in mAChR signaling may contribute to the development of various ocular diseases. On the other hand, mAChRs may offer an attractive therapeutic target to treat ocular diseases. Thus far, non-subtype-selective mAChR ligands have been used in ophthalmology to treat dry eye disease, myopia and glaucoma. However, these drugs were shown to cause various side-effects. Thus, the use of subtype-selective ligands would be useful to circumvent this problem. In this review, we give an overview on the localization and on the functional role of mAChR subtypes in the eye and its adnexa with a special focus on the retina. Moreover, we describe the pathophysiological role of mAChRs in retinal diseases and discuss potential therapeutic approaches. 相似文献
20.
Autism spectrum disorder (ASD) is a heritable neurodevelopmental condition associated with impairments in social interaction, communication and repetitive behaviors. While the underlying disease mechanisms remain to be fully elucidated, dysfunction of neuronal plasticity and local translation control have emerged as key points of interest. Translation of mRNAs for critical synaptic proteins are negatively regulated by Fragile X mental retardation protein (FMRP), which is lost in the most common single-gene disorder associated with ASD. Numerous studies have shown that mRNA transport, RNA metabolism, and translation of synaptic proteins are important for neuronal health, synaptic plasticity, and learning and memory. Accordingly, dysfunction of these mechanisms may contribute to the abnormal brain function observed in individuals with autism spectrum disorder (ASD). In this review, we summarize recent studies about local translation and mRNA processing of synaptic proteins and discuss how perturbations of these processes may be related to the pathophysiology of ASD. 相似文献