首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
用Elias沉淀点法求取聚二甲基硅氧烷25℃在乙苯-邻苯二甲酸二乙酯体系,庚烷-二氧六环体系的θ-溶剂组成。测定了聚二甲基硅氧烷八个级份在甲苯溶液中光散射和两种θ-溶剂中特性粘数,得到 [η]_θ=7.62×10~(-2)(?)_ω~(0.50)乙苯-邻苯二甲酸二乙酯体系γ_ω=19.0% [η]_θ=8.28×10~(-2)(?)_ω~(0.50)庚烷-二氧六环体系γ_ω=77.2% 聚二甲基硅氧烷分子无扰尺寸存在溶剂介质依赖性。  相似文献   

2.
聚二甲基硅氧烷分子尺寸的温度依赖性,文献报导出入甚大.Ciferri测定了一个试样在二甲基硅油中30—150℃的特性粘数.Mark、Flory测定了两个级份(M_w=2.5×10~6,4.3×10~5)在二甲基硅油中30—105℃的特性粘数,从所得良溶剂内[η]值依据稀溶液理论外推;钱人元、余世诚、高玉书采用乙苯-邻苯二甲酸二乙酯混合溶剂体系,在  相似文献   

3.
聚二甲基硅氧烷的特性粘数分子量关系,前人已有许多工作.但从以甲苯为测定特性粘数溶剂的结果来看,其关系式中的参数就有显著的差异,如表1.鉴于目前国内对聚二甲基硅氧烷有广泛兴趣,因此重新订定了[η]-M方程的参数.本工作以光散射测定分子  相似文献   

4.
测定了五个聚苯乙烯级分((?)_η3.2×10~5—2.7×10~6)在丁酮-正己烷体系中的特性粘数,发现高分子量级分的特性粘数-组成曲綫在γ=0.13处出现极大值。简要叙述了自制光电式散射光度计的结构。聚苯乙烯级分在上述混合溶剂体系内光散射测定的结果表明,A_2也在γ=0.13处出现极大。应用溶度参数解释了上述结果。本工作所得聚苯乙烯溶度参数实验值为8.8。 根据在θ-溶剂中A_2=0及Mark-Houwink方程参数α=1/2的条件,从粘度及光散射所测得的聚苯乙烯-丁酮-正己烷体系(30℃)的θ溶剂组成是一致的,γ_θ=0.45。  相似文献   

5.
对聚二甲基硅氧烷-溴代环己烷θ溶液(28℃)体系进行了沉降速度法测定分子量分布及沉降系数压力改正的研究。提出了一种新的直接测定沉降系数的压力改正的方法,即在沉降池中加入不同量的溶液以得到不同的液柱高来改变静压,测定溶液界面在不同静压下的浮升速度计算压力系数。所得适用 于静压为200大气压以下的沉降系数的压力改正系数α=1.44×10~(-3)_(大气压)~(-1)。从沉降系数分布、(?)_ω、[η]_θ及[η]_(甲苯)的测定,订定了聚二甲基硅氧烷在28℃θ条件下的s-M,[η]_θ-M及在甲苯(25℃,良溶剂)中的[η]-M单分散关系为。 s_1=6.30×10~(16)M~(0.50)(溴代环己烷,28℃) [η]=7.41×10~(-2)M~(0.50)(溴代环己烷,28℃) [η]=9.53×10~(-3)M~(0.71)(甲苯,25℃)  相似文献   

6.
纤维素硫酸半酯钠盐的分子链相对僵硬性测算   总被引:1,自引:1,他引:1  
本文测定了已知分子量的纤维素硫酸半酯钠盐在不同离子强度(I)NaCl溶液中,25℃的特性粘数[η],确立了与此相对应的[η]与1/I~(1/2)和logs(=△[η]/△(I)~(-1/2)与 log[η]_(0.1)的线性关系.依 Smidsrod 方程(S=B·[η]_(0.1)~v),求得纤维素硫酸半酯钠盐的分子链相对僵硬性参数B值0.088。参数B不仅用作各种高分子链的相对僵硬性的量度,还可以用来定量地表征各种聚电解质溶液特性粘数对外加盐的响应。  相似文献   

7.
1.一个聚甲基丙烯酸甲酯级分(M=2.63×10~6)在等折射率的溶剂-非溶剂体系(乙酸甲酯-乙醇)中测定粘度和光散射,得到的结果证实dlog[η]/dlog(?)~(1/2)=3。 2.试样的乙酸甲酯溶液粘度在通常的测定条件下已达到低切变速度区域的牛顿流动范围。 3.在25.0°时θ-溶剂组分是γ_w(乙醇)=0.509。 4.从θ-溶剂中测定试样的沉降系数累积分布I(s),再结合_w,[η]_θ实验值,可以计算单分散体系的 s=(?)_sM~(1/2),[η]_θ=(?)_θM~(1/2)关系中的(?)_s,(?)_θ值。25.0°时聚甲基丙烯酸甲酯的 (?)_s=3.02×10~(-15),(?)_θ=4.59×10~(-2)。 5.经多分散性改正后的Flory常数Φ=1.6_1×10~(23),聚甲基丙烯酸甲酯高分子链的((?)/M)~(1/2)=66×10~(-10)。  相似文献   

8.
通过聚α-甲基苯乙烯活性双阴离子和α,α′二氯对甲苯在极稀的溶液中反应合成了环型聚α-甲基苯乙烯。通过光散射法、渗透压法和粘度法进行了有关溶液性质的表征工作。在甲苯中,最小分子量的两个级分的特性粘数[η]实验和相同分子量的线型聚α-甲基苯乙烯的特性粘数[η]线之比分别为0.648和0.707。  相似文献   

9.
以苯酚为溶剂,甲醇为沉淀剂将三个聚壬酰胺试样(??各为20400,12900和7100)分级沉淀.每一试样至少经过二次分级,共得到二十级份.取其中七个级份测定其数均分子量及特性粘数.粘度测定在25℃,溶剂用苯酚-乙酸(2∶1重量比).在分子量4300-20000内,得到下列特性粘数-分子量关系: [η]=7.52×10~(-3)M~(0.96)ml/g M=200[η]-360 苯酚-乙酸(2∶1重量比)混合溶剂容易纯化且不引起聚壬酰胺的降解,能溶解尼龙-6,66,7,9和11,可作聚酰胺粘度测定的普适溶剂.  相似文献   

10.
比密粘度和特性粘数的计算及改正   总被引:1,自引:0,他引:1  
本文导出毛细管粘度计的比密粘度方程: v=η/ρ=At-Bt~(-1)+C 式中-Bt~(-1)和C分别代表动能改正和残液改正。方程在宽的粘度范围内有良好精度。本文提出,准确的特性粘数[η]与忽略任何改正的特性粘数[η]~*之间存在简单的线性关系。例如从以上方程可写出[η]=(1+k_e-k_v)[η]~*+δρ式中k_e=2Bt_o~(-1)/At_0+Bt_0~(-1)+C), k_v=C/(At_0-Bt_0~(-1)+C), δρ=(ρ_1-ρ_0)/(c_1ρ_0), 它们分别是代表动能改正、残液改正和密度改正的常数。利用以上特性粘数改正公式, 可在确保准确性的前提下极大地简化特性粘数的改正计算。  相似文献   

11.
用六个5°时乳液聚合的低温丁苯橡胶级份(M_n=5×10~4—1×10~6),作甲苯溶液的粘度(30°)和渗透压(25°)的测定。试样能全部溶解,粘度性质都很正常,k’值没有异常增大,高分子的支化可以忽略。渗透压数据可用(π/C)~(1/2)对C作线性外推,得到的分子量和第二维利系数依从 RTA_2=7.41×10~5Mn~(-0.275)的关系。特性粘数与分子量间的关系为 [η]=2.95×10~(-2)M~(0.75)厘米~3/克(甲苯溶液,30°)与高温丁苯橡胶的线型分子相较,当分子量相同时,[η]低温/[η]高温=1.24,此差别可能是由于近程结构(1,2及顺、反式1,4加成)的不同所致。  相似文献   

12.
在不同外加水压下作者等用毛细管粘度计测定了聚甲基丙烯酸甲酯五个分级试样的苯溶液粘度,并用光散射法在丙酮溶液中测定了重均分子量,得到下列特性粘数、分子量关系式(25°)。不加外压时:[η]=3.80×10~(-3)M~(0.79)毫升/克S_R=55达因/厘米~2:[η]_s=12.6×10~(-3)M~(0.70)D_R=5000秒~(-1):[η]_D=8.37×10~(-3)M~(0.73) 适用于分子量范围0.2—4.5×10~6。并指出用实验数据验证性粘数理论时,α值的切变速度依赖性有重要的影响。粘度数据中斜度系数 k′或β值,无论对 S_R 或 D_R 都没有显著的影响,与前人的结果有不同。对光散射测定所用仪器加以叙述并从光散射数据得到了试样的 A_2和<~2>_z 的数值。  相似文献   

13.
本文用光散身的粘度法研究了一种含酞侧基的聚醚醚酮(PEK-C)在氯仿(CKCl_3)和二甲基酰胺(DMF)中的稀溶液性质,建立了PEK-C在两种溶剂中的Mark-Houwink方程:并得到了高分子一溶剂相互作用参数χ_1和PEK-C的特征常数K_θ值: K_θ=6.25×10~(-2)ml/g,X_1=0.48,CHCl_3 K_θ=4.42×10~(-2)ml/g,X_1=0.49,DMF以及流体力学扩张因子α_η~3与分子量间的函数关系。  相似文献   

14.
在浓硫酸或稀硫酸中聚合得到了高分子量P2VP,~(13)C-NMR谱确定其为无规聚合物。特性粘数(切变速度D=0)与分子量之间的关系为[η]_(D=0)=1.27×10~(-2)(?)_W~(0.70)(在DMF中,25℃,(?)_W=2.66×10~6—10.0×10~6)。在DMF中,25℃,不依赖于切变速度的最大特性粘数为260毫升·克~(-1),相应的分子量M_η=1.74×10~6左右。无扰尺寸(_0/M)=6.08×10~(-18)厘米~2·克~(-1),在DMF 中B参数为1.91×10~(-27)厘米~3。  相似文献   

15.
(1)聚己內醯胺試樣在85%甲酸溶液中加水分級沉澱,得到分子量不同的級份,經羧基滴定,並於40%硫酸溶液中,在25°時测定粘度,得到下面的特性粘數分子量關係式: [η]=5.92×10~(-4) M~(0.686)或 [η]=2.44×10~(-5) M+0.080濃度單位是克/分升,分子量範圍是3000-13000。 (2)聚己內醯胺的40%硫酸溶液的粘度數據,試用了三種外推公式: lnη_r/c=[η]-β[η]~(2)c (1) η_(sp)/c=[η]+k′[η]~(2)c (2) logη_(sp)/c=log[η]+k[η]c (3) 用式(1)和式(3)得到的[η]值相同,式(2)得到的略小1-2%。β和k′值隨分子量的减小而顯著地增大,這和一般的高聚物——溶劑體系的行為相反。當高分子與溶劑分子間的氫鍵作用是高聚物溶解的主要因素時,用k′值來做溶劑能力的估計,是完全沒有意義的。 (3) 聚己內醯胺在40%硫酸裏,溶液粘度的切變速度依賴性是可以忽略的。我們認為40%硫酸是測定聚己內醯胺的粘均分子量的最合適溶劑。 (4) 從粘度數據依照Debye和Bueche的特性粘數理論,算出聚己內醯胺分子在40%硫酸裏的等效Stokes半徑,說明聚己內醯胺分子在40%硫酸溶液裏的形態,可以看作是無規則的線團。  相似文献   

16.
利用光散射得到了分子量为 2 2 3× 1 0 4~ 1 30× 1 0 4窄分布 (Mw/Mn≤ 1 .2 8)的聚 (N 异丙基丙烯酰胺 ) (PNIPAM)在四氢呋喃 (THF)溶液中 2 5℃的第二维利系数A2 及分子链均方回转半径〈S2 〉与分子量的关系 ,即A2 ∝Mw-0 .2 5 ,〈S2 〉1/ 2 =1 .5 6×1 0 -9Mw0 .5 6.还测定了在THF和甲醇中 2 5℃的特性粘数 [η],得到的Mark_Houwink方程为 [η]=6 .90× 1 0 -5 M0 .73 (THF溶液 )和 [η]=1 .0 7× 1 0 -4 M0 .71(甲醇溶液 ) .以上结果表明THF和甲醇都是PNIPAM的良溶剂 .根据Kurata_Stockmayer方程计算得到PNIPAM在两种溶剂中的极限特征比C∞ 为 1 0 6 ,说明PNIPAM为与聚苯乙烯相似的柔性链 ,因此可以形成珠球 .还跟踪了PNIPAM水溶液的特性粘数在 2 5~ 31 5℃之间的变化 ,发现特性粘数随温度升高而下降 ,呈现两个阶段 :低温阶段的斜率较小而高温阶段的斜率较大 ,转折温度约为 30 1℃ .表明从 2 5℃起分子链就开始收缩 ,到 30℃以上时升温对收缩的促进更显著 .  相似文献   

17.
根据前文提出的理论模型,本文推导出下述表征高聚物数均分子量(M_n)与玻璃化转变温度T_8关系的理论公式: T_g=T_g~∞-K_g/M_n K_g=T_g~∞·σ~2(T_g)·M_u十几种高聚物的K_g理论计算位能较好地和实验值吻合。应用理论关系式具体计算了聚苯乙烯、聚氯乙烯、聚二甲基硅氧烷和聚α-甲基苯乙烯的T_g随分子量的变化,其结果是令人满意的。  相似文献   

18.
1.聚甲基丙烯酸甲酯-丙酮-甲醇体系的两次分相实验用θ-溶剂中的沉降速度法测定分相前试样和浓相的分子量分布曲线,得到高分子在浓稀相重量分配的分子量依赖关系 f″_j=Qe~(σM_j) 证实Flory的溶度函数形式与实际相符,并适用于三元体系的相分离,但Q值与两相体积比R值并不相同。 2.再分级使级分的分子量分布宽度随再分级次数的增加而减小,通常认为到第三次再分级其效果已不显著并不确实。 3.建议一种用两次相分离实验和五次精密的特性粘数测定,结合从[η]_(■)和[η]_θ值估计分子量分布宽度,得出分子量分布曲线的简便近似力法。  相似文献   

19.
特性粘数一般由η_(sp)/C 或 ln η_r/C(η_(sp)是增比粘度,η_r 是相对粘度,C 是浓度)对 C 作图,外推到 C=0而求得。这样每个样品就至少需要测定三个不同浓度下的溶液粘度。在某些情况下,如要快速知道结果,样品很少,不便稀释,实验中途发生意外仅得一个数据等情况时,就感到很不方便。为此,文献中早有一点法测定特性粘数的报导。近年来许多人仍重视该问题的研究。下面将引述几个常用的及一点法表示溶液粘度数据的方程式:η_(sp)/C=[η] k'[η]~2C (1)ln η_r/C=[η]-β[η]~2C (2)[η]=(2(η_(sp)-ln η_r))~(1/2)/C (3)[η]=(η_(sp) r ln η_r)/C(1 r) (4)r=k'/β[η]=(η_(sp) 3 ln η_r)/4C (5)式中,[η]为特性粘数。η_r 为相对粘度。η_(sp)为增比粘度。k'和β在一般情况下是与分子量无关的常数。  相似文献   

20.
脂肪族聚碳酸酯的分子量表征问题可以从GPC数据阳特性粘数较迅速可靠地解决,同时求出其数均,粘均,重均,动力学平均分子量,及其分子量—特性粘数关联参数。为此须对以往方法作较大的改进,其关键是用迭代法进行特性粘数(dL/g)与分子量的关联。如此对聚碳酸亚丙酯和碳酸亚乙酯分别得到以下关系: ln(η)=-6.671+0.328ln(?)v+0.0186(ln(?)v)~2 (25℃,THF) (η)=6.64×10~(-5)(?)v~(0.76) (25℃, CHCl_3)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号