首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
随着煤矿步入现代化开采,厚煤层大采高开采技术已得到广泛应用.大采高必然导致大开采空间,覆岩运动较为剧烈,继而对地表构(建)筑物造成一定的损害.为有效地保护地表建筑物免受破坏,合理地留设保护煤柱,本文以山西晋城寺河煤矿5304大采高工作面为工程背景,建立地表移动观测站,对地表移动变形规律及岩层角值参数进行研究分析,并采用概率积分法对地表移动变形进行预计,绘制了地表移动变形等值线图.结果表明:该工作面开采后引起的地表最大下沉值为4365.6 mm,下沉系数为0.83;矿区倾向移动角为73.8°,边界角为70.2°,走向移动角为73.2°,边界角为67.8°,充分采动角为52.8°,最大下沉角为86.6°.研究成果对寺河矿区的保护煤柱设计以及"三下"开采具有一定的指导意义.  相似文献   

2.
为研究抚顺西露天矿地下充填开采诱发的地表移动变形规律,采用有限元方法开展数值模拟研究,分析不同采区开挖充填后对地表移动变形规律的影响,得出开采后地表沉降与水平位移值,并计算相应变形值,预测出移动角及地表移动变形影响范围。结果表明:随着采区的不断开采,地表沉降、水平位移以及倾斜变形、曲率、水平变形均不断增大,开采影响范围也逐渐增大,境界线最终确定在N1400左右,即在露天坑内,周围建筑物不会受到影响。  相似文献   

3.
煤炭开采会造成岩体变形和破坏,造成地表变形移动。为获取地表移动参数,通过在综放工作面地表设计并布设岩移观测站,对地表观测成果进行整理分析,获得工作面综放开采地表移动变形的相关参数,走向移动角为74°,倾向上山移动角为79°,倾向下山移动角为77°,为矿井今后留设村庄等构筑物保护煤柱提供科学依据。  相似文献   

4.
为掌握厚煤层综放开采地表移动变形规律,高河煤矿在E1302工作面上方设置了地表移动观测站。通过对观测资料的分析与研究:给出了厚煤层综放开采条件下地表沉降曲线和最大移动变形值;求取了该矿地质采矿条件下地表岩移预计参数和角值参数;揭示了厚煤层综放开采条件下地表移动变形规律和特点。  相似文献   

5.
为了研究巨厚松散层开采条件下地表移动变形规律,文中根据彭庄煤矿地表移动观测站实测资料,分析了非充分采动条件下的地表移动变形情况,并借助于FLAC3D数值模拟软件,探讨了巨厚松散层开采条件下地表移动变形规律的采厚效应。研究结果表明:在非充分采动条件下,地表最大下沉值为609 mm,最大水平移动值为220 mm,超前影响角为57.17°,最大下沉速度为11 mm/d,最大下沉速度滞后角为75.62°;煤层开采厚度是影响地表移动变形的重要因素,随着开采厚度的增加,地表最大下沉值及水平移动值呈线性增大的趋势,并借助MATLAB数学软件回归分析拟合得到开采厚度与最大下沉值、下沉系数及水平移动值的函数表达式。  相似文献   

6.
文中运用FLAC-3D软件,通过数值模拟法计算开采引起的地表及基岩内部的移动变形情况,并与地表实测的移动变形值进行了对比分析、通过FLAC内置的FISH语言编程,提取绘制地表以及基岩与松散层交界面的沉降等值线,进而确定该区域的松散层移动角值。  相似文献   

7.
地下矿产开采过程中诱发的上部岩体移动将严重影响生产安全,主要原因是大规模的地下开采引起围岩移动,破坏了围岩原有的力学平衡状态,造成应力重分布,岩石移动逐渐波及到地表,引起了地表变形。为了研究多中段叠加开采对上覆岩体移动与变形的影响,以马城矿工程为例,运用MIDAS,FLAC3D等数值模拟方法模拟不同开采中段条件下地表移动与变形特点,得出各阶段沉降与水平位移值,计算相应变形值,简要介绍了地下开采引起的地表移动变形5项指标对地表建筑物的影响。研究表明:最终地表移动变形是多次重复开采扰动的叠加作用,并根据国家标准界定出移动角,从而为同类矿山的开采设计提供了科学依据。  相似文献   

8.
地下煤层的开挖可能导致地表建筑物发生变形破坏。以西露天矿开采为工程实例,通过2种不同开采方法的数值模拟,得到了经4步开采后地表的沉降值和水平位移值,并通过"下沉"、"倾斜"、"曲率"、"水平变形"4项指标求得边界角和移动角。研究表明:充填开采可以减小地表下沉量和水平位移,破坏范围最终在N1 200 m左右,即露天坑内部,能够有效地保证地表建筑物安全,使得该项工程顺利通过专家论证,对抚顺集团和整个抚顺市都有着重要的经济意义。  相似文献   

9.
为研究采空区下浅埋厚煤层综放开采对地表影响,对布尔台42105工作面开采进行地表移动观测,得出了该区条件下综放开采的地表移动规律。结果表明,采空区下工作面回采引起的地表下沉变形有如下特点:随着工作面的推进,地表下沉启动后下沉速度快,达到最大下沉值需要时间短,而后趋于稳定;地表移动和变形值较大,并进一步实测和计算得出地表最大下沉值2740mm、边界角57.45°、超前影响距249m、超前影响角60.4°和最大下沉速度滞后角76°。运用概率积分法分析得出42105工作面地表沉降模型相应参数,为预测相似条件下地表沉降和相应控制措施提供了范例。  相似文献   

10.
根据一定采深条件下废弃老采空区残余沉降特点,以概率积分模型和开采沉陷的碎块体理论为基础,采用极限沉降预测法进行了老采空区地表的移动和变形计算。计算结果显示,地表潜在的残余移动变形值不大,只要对各建筑物采取适当的抗变形结构措施,是可以保证安全的。  相似文献   

11.
厚黄土层薄基岩综放开采地表移动规律研究   总被引:4,自引:2,他引:2  
郑志刚 《煤炭技术》2014,(4):132-134
通过对地表岩移观测资料的分析研究,获得了厚黄土层薄基岩综放开采条件下岩移参数和岩移角值,揭示了该地质采矿条件下地表移动变形的一般规律和特点。研究认为厚黄土层薄基岩综放开采条件下,地表移动变形在时间上和空间上更为集中,采空区上方地表下沉值大,煤层上方下沉值明显较小,地表下沉系数大,水平移动系数偏小,地表下沉速度快,地表沉降活跃期短,但活跃期的累计下沉量占总沉降量的比重高。  相似文献   

12.
为掌握营盘壕煤矿首采工作面高强度开采条件下的地表移动变形特征,根据该矿2201工作面大采深、巨厚弱胶结覆岩以及地表由风积沙所覆盖的特征,在该工作面地表建立了地表移动观测站。通过历时15个月共11次地表移动观测,获取了工作面地表移动变形的实测资料。根据对实测数据的处理分析,得到了首采面地表移动变形角量参数和概率积分法预计参数,并进一步分析了该地质采矿条件下地表下沉速度的变化特征。研究表明:①在营盘壕煤矿的地质采矿条件下,首采面推进过程中地表点移动变形值始终较小,且地表下沉过程中未出现过活跃期;②当首采工作面推进至1 634 m时,非充分开采的地表下沉率仅为0.171,主要影响角正切为1.13,开采影响传播角为89.5°,拐点偏移系数为0.08;③该工作面的倾向非充分开采及其上方的巨厚弱胶结砂岩层的控制作用是地表移动变形值与下沉率较小的主要原因。研究结果对于巨厚弱胶结覆岩深部开采条件下的地表移动变形控制与建(构)筑物保护具有一定的参考价值。  相似文献   

13.
为研究黄河流域中游陕北矿区湿陷型黄土沟壑地貌高强度开采地表移动变形特征,对柠条塔矿黄土沟壑区N1212工作面开展系统的地表沉陷监测,分析黄土沟壑地貌高强度开采条件下地表沉陷变形特征,确定地表最大下沉速度及最大下沉速度滞后角,地表移动时间和动态地表移动参数。研究结果表明:陕北湿陷型黄土层高强度煤炭开采地表非连续变形破坏严重,黄土地表易受移动变形与地形条件复合影响,出现不均匀沉降,高强度开采条件下,地表移动变形发育剧烈,地表最大下沉量5 255 mm,最大水平移动值2 680 mm,最大下沉速度为187.4 mm/d,单一煤层开采最大下沉系数为0.63,斜交重复采动最大下沉系数为0.84,活跃期约55 d,期间下沉量占总下沉量97%,最大下沉速度滞后距为74 m,最大下沉速度滞后角67°。上述结果验证了浅埋煤层高强度开采时,地表下沉剧烈、活动周期短、重复采动时,地表下沉量与地质采矿因素成正比,沟谷地形高强度开采地表变形具有速度快、塌陷大、损害重的特征。  相似文献   

14.
根据红岭铅锌矿开采技术条件,用HyperMesh软件建立符合矿体复杂特征的三维有限元数值模型,对红岭铅锌矿各中段开挖后的岩层移动规律进行了深入分析,获得了红岭铅锌矿岩层移动范围。结果表明:岩层移动破坏范围的模拟结果与现场实测值较为吻合,通过数值模拟位移分析,确定了矿体上盘岩层移动角59.2°,下盘岩层移动角63.8°,端部岩层移动角68.9°,圈定了红岭铅锌矿矿床开采地表移动范围,为红岭铅锌矿安全高效开采提供了理论依据。  相似文献   

15.
以某铁矿为研究对象,运用类比法和数值模拟的方法,针对矿区地下开采对地表铁路的安全运营影响进行了分析。确定了矿山上下盘及端部岩石移动角,获得了矿山各中段的开采边界。三维数值模拟计算结果表明,矿体开采后引起的地表变形值小于保护等级为I级的建筑物允许变形值,满足要求。  相似文献   

16.
程潮矿区自建矿以来 60 余 a,均采用无底柱分段崩落法开采。随着开采活动由浅至深,矿区地表已出 现大面积塌陷。由于开采工作面不断向西区转移,上盘移动角也随之发生了改变,导致地表沉降范围扩大,部分重 要构、建筑物将不再处于安全范围。基于此,利用极限平衡理论构建上盘移动角预测模型,并通过数值模拟的方法 对其结果进行验证。结果表明:通过上盘移动角预测模型计算得到上盘移动角约为 56°,数值模拟方法得到上盘移 动角约为 58°;2 种方法得到的结果在误差允许范围内,该预测模型可以有效预测上盘移动角;同时,当开采至-600 m 水平时,上盘部分地表重要构建筑物可能存在安全隐患,建议采取相应措施。  相似文献   

17.
长壁开采老采空区注浆充填范围确定方法   总被引:2,自引:0,他引:2  
浅部老采空区注浆充填是保证老采空区建筑物地基稳定的有效措施,在确定充填治理范围时,目前大多采用正在开采的地表移动角确定注浆充填范围,这将导致充填范围过大,造成不必要的浪费,为此,基于国内开采沉陷资料,首先建立了正在开采的地表移动角与深厚比的关系,然后在分析老采空区变形机理基础上,提出了残余移动角的思想,根据残余移动与正在开采的地表移动相似性,建立了残余移动角与老采空区开采深度、等效开采厚度之间的关系,给出了老采空区充填注浆范围的确定方法,为老采空区充填治理范围的确定,提供了可靠的理论和方法.  相似文献   

18.
郑志刚 《煤矿开采》2014,(2):88-90,94
为了揭示重复采动条件下地表沉陷变形规律,凤凰山煤矿在154309工作面上方建立了地表移动观测站。通过对岩移观测资料的分析研究,给出了重复开采时地表沉降曲线,获得了该地质采矿条件下地表移动变形预计参数和岩移角值,探讨了重复采动条件下地表移动变形特征。研究认为,重复采动条件下地表沉陷变形剧烈,下沉盆地陡峭,变形分布集中,地表下沉系数大,采动影响范围大。地表动态变形剧烈,下沉速度快,最大下沉速度为143.4mm/d,地表移动持续时间较短,活跃期约占地表移动持续时间的30.7%,其下沉量占地表总沉降量的96.3%。  相似文献   

19.
《煤矿开采》2017,(4):65-69
采动影响区地表移动变形通过房屋基础与周围土体的摩擦力传递给上部结构,在房屋墙体内产生附加应力,当移动变形超过墙体的扰动影响最大承受值时,导致房屋拉破坏或压破坏,对采动区地表房屋造成损害。为解决采煤沉陷区矿方与百姓就房屋损害技术鉴定责任划分,以及村庄下开采工作面合理布置与尺寸优化问题,分析了地表水平变形与房屋墙体水平变形的关系,应用多研究手段推导出采动区房屋损害地表水平变形临界值的计算公式;同时引入了房屋损害裂缝角的概念,并提出了该角值的理论计算方法。结果表明:地表水平拉伸变形达到0.61mm/m,而水平压缩变形达到-1.33mm/m,采动影响区房屋墙体将会在薄弱部位出现采动裂缝,从而对房屋造成开采损害;矿区房屋损害裂缝角临界值约为58°,房屋裂缝角介于边界角和移动角之间。  相似文献   

20.
通过实测和模拟方法对开元煤矿丘陵地貌条件下开采沉陷规律进行了研究,结果表明:充分采动时地表下沉系数为0.78,水平移动系数为0.23,采动影响边界范围173 m,边界角为59°,移动角为73°,主要影响角正切为1.8。研究成果为开元煤矿保护煤柱设计确定采动影响范围、进行"三下"采煤地表沉陷设计、确定地表沉陷各项参数和村庄压煤开采设计提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号