首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
以超声波对于碱木质素进行改性,将改性后的碱木质素与聚乙烯醇(PVA)经甲醛交联制备了PVA/超声波处理碱木质素发泡材料(UPLFM),检测其力学性能,采用扫描电镜(SEM)、热重(TG/DTG)等表征,并与PVA/碱木质素发泡材料(PLFM)进行了比较。结果表明:超声波处理20 min的碱木质素用量为40%、甲醛用量1.25 mL·g~(-1)时,UPLFM发泡材料拉伸强度最大,最大为61.21 MPa。SEM显示UPLFM较PLFM孔径更规则,TG/DTG分析表明,UPLFM与PLFM的热稳定性基本相同。  相似文献   

2.
以木屑为原料,不添加任何黏结剂,使用H3PO4作为活化剂,制备高孔隙的成型活性炭。利用N2吸附-脱附、XRD及万能试验机,考察了不同活化时间(1~3 h)、活化温度(500~700 ℃)对成型活性炭性能的影响。结果表明:制备的成型活性炭具有较高的比表面积、孔隙率、得率、表观密度、耐压强度和总孔容积。在活化温度为600 ℃,活化时间为1 h的条件下,其比表面积达1 022.6 m2/g,得率为32.2 %,表观密度为0.62 g/cm3,耐压强度为5.23 MPa,总孔容积为0.49 cm3/g,微孔比例达到91.8 %。通过Doehlert设计法对反应条件进行优化,结果表明优化的制备条件为活化温度590 ℃,活化时间2.1 h,此时成型活性炭得率、耐压强度和表观密度分别为31.8 %、5.54 MPa、0.87 g/cm3。理论值和实验值存在很好的一致性,表明该理论模型是可靠的。  相似文献   

3.
利用聚丙烯酸接枝碱木质素(PAA-g-AL)和酚醛树脂(PF)制备聚丙烯酸接枝碱木质素/酚醛开孔吸水材料(PAA-g-AL/PF),并对PAA-g-AL、发泡剂、表面活性剂、增韧剂加入量和发泡温度的影响进行了研究。采用SEM、FT-IR、DSC和TGA分别对PAA-g-AL/PF的微观形貌、官能团和热性能进行表征。结果表明,50 g PF加入7%聚丙烯酸接枝碱木质素、16%发泡剂、8%表面活性剂、7%增韧剂和4.8 g 10%盐酸在发泡温度为62 ℃的条件下2 h发泡成型制得的PAA-g-AL/PF开孔吸水材料,吸水率达33.08 g/g、表观密度为5.1 g/dm3,PAA-g-AL与PF网络之间存在显著的分子间氢键作用,136 ℃以下热稳定性良好且材料为均匀开孔结构,吸水后形状保持不变。  相似文献   

4.
以碱木质素和杉木屑为原料,磷酸为活化剂,制备碱木质素基成型活性炭,考察了碱木质素质量分数、浸渍比、活化温度、活化时间等对活性炭性能的影响。研究结果表明:碱木质素复配杉木屑(碱木质素质量分数50%)后,复配料的表面润湿性显著提高,瞬时水接触角由133.2°(碱木质素)降低至86.6°(复配料);热膨胀系数显著降低,膨胀温度区间的热膨胀系数由2 365 μm/(m·℃)(碱木质素)降低至45 μm/(m·℃)(复配料)。在最佳工艺条件即碱木质素质量分数50%、浸渍比1.5:1(纯磷酸与复配料质量比)、活化温度500℃、活化时间90 min下,制备的成型活性炭得率41.76%,碘吸附值1 070 mg/g,亚甲基蓝吸附值255 mg/g,强度90%,比表面积1 646 m2/g,总孔容积为0.795 cm3/g,其中孔径小于5 nm的孔容积占总孔容积的97.2%。  相似文献   

5.
针对哈拉哈塘油田大水体发育的储层条件,以聚丙烯酰胺为主剂制备了一种超低密度(0.88~0.95 g/cm3)凝胶堵剂。探究了聚合物、密度调节剂M4对体系密度和增强剂Z3、密度调节剂M4对成胶强度的影响。结果表明:当体系加入密度调节剂时,体系密度可从1.2 g/cm3降为0.88 g/cm3,同时密度调节剂M4对体系强度有明显增强作用,无密度调节剂M4时屈服应力只有42 Pa,密度调节剂M4质量分数为4%时,屈服应力为284 Pa。  相似文献   

6.
聚乙烯醇/改性碱木质素发泡材料的制备与性能   总被引:2,自引:0,他引:2  
以改性碱木质素与聚乙烯醇(PVA)为原料,甲醛为交联剂,采用无机发泡原理,制备了聚乙烯醇/碱木质素发泡材料(PLFM)、聚乙烯醇/环氧化碱木质素发泡材料(PELFM)和聚乙烯醇/羟甲基化碱木质素发泡材料(PHLFM),并利用红外光谱、扫描电镜、DSC及TG对发泡材料进行了测定及分析。结果表明, PVA用量为5 g时,环氧化碱木质素用量为50%(以PVA质量计,下同),甲醛用量24%,硫酸用量54%,固化温度120 ℃制备的PELFM拉伸强度最大,为17.26 MPa。FT-IR分析显示, PLFM和PHLFM的苯环5位均发生取代,而PELFM没有发生取代;SEM图片显示发泡材料的孔径不规则,孔隙率较大;与另两种发泡材料相比,PELFM拉伸性能低,表观密度较低,吸水倍率也较低。从DSC和TG分析可知,3种发泡材料中PELFM具有较低的玻璃态转变温度,但其生物相容性最好,PELFM失重率最高峰对应的峰值温度最大且介于碱木质素与PVA之间,烧失后残余量也最大,表明PELFM的耐热性更好,热稳定性更强。  相似文献   

7.
马越  程妍 《无机盐工业》2022,54(3):109-112
粉煤灰酸渣是粉煤灰经酸溶提铝后的副产品,主要化学成分为无定形二氧化硅,其资源化利用不仅解决了粉煤灰酸渣堆存带来的环境问题,还能获得附加值较高的二氧化硅气凝胶。以粉煤灰酸渣制备的水玻璃为原料,通过溶胶-凝胶—溶剂交换/表面改性—常压干燥工艺成功制备了低密度(0.083 g/cm3)、高比表面积(708 m2/g)、高疏水性(接触角为143°)的多孔二氧化硅气凝胶。通过热重-差热分析、红外光谱分析、接触角测试、扫描电镜分析、氮气吸附-脱附测试等手段对热处理前后二氧化硅气凝胶的结构和疏水性进行了表征。结果表明,随着热处理温度升高,二氧化硅气凝胶的比表面积增大、疏水性逐渐减弱直至消失。300 ℃热处理后,二氧化硅气凝胶仍具有较强的疏水性(接触角约为128°),密度为0.080 g/cm3。当热处温度为400~600 ℃时,二氧化硅气凝胶仍具有中孔结构,由疏水性变为亲水性,密度从0.073 g/cm3增加到0.078 g/cm3。  相似文献   

8.
碱木质素接枝聚丙烯腈多孔材料的性能表征   总被引:2,自引:0,他引:2  
在碱木质素与丙烯腈单体接枝共聚过程中分别添加无机模板剂硝酸铵、硝酸铁和氯化钠制备碱木质素接枝聚丙烯腈 (AL-g-PAN)多孔材料。利用SEM、XRD对AL-g-PAN的结构进行表征;以FT-IR对材料的官能团进行分析;以TG-DTG、DSC对AL-g-PAN的热性能进行测定。以硝酸铅为目标污染物,考察了多孔AL-g-PAN对Pb2+的吸附性能。结果表明:在25 ℃、Pb2+初始浓度为308.5 mg/L、pH值为5的条件下,以硝酸铁为模板剂制备的多孔AL-g-PAN对Pb2+平衡吸附量为145.83 mg/g,Pb2+去除率为94.5%;该多孔材料成孔均匀、平均孔径在0.913 nm、孔径主要分布在2 nm以下的微孔区域;相同条件下,无模板剂的碱木质素接枝聚丙烯腈对Pb2+平衡吸附量仅为28.06 mg/g,其去除率为18.2%。多孔AL-g-PAN的热稳定性较碱木质素明显增强。  相似文献   

9.
用含有小分子醇的交联剂和催化剂使废旧聚氨酯(PU)硬泡进行降解能够获得多元醇,将降解料与聚醚多元醇、催化剂和发泡剂共混以制备白料,然后与黑料异氰酸酯混合均匀,得到再生PU硬泡。通过对降解产物的黏度、羟值以及获得的再生PU硬泡材料的密度、强度、吸水率、热稳定性、扫描电子显微镜、红外光谱和热失重等进行测试分析,得出了催化剂添加量对废旧PU材料回收再利用的影响因素。结果表明,催化剂(KOH)用量为0.9 g时废旧PU的降解效果最好,获得的再生PU硬泡的密度为37.6 kg/cm3,压缩强度为164.2 kPa,热导率为0.015 24 W/(m·K),吸水率为0.429 5 %。  相似文献   

10.
以杨木粉为原料,通过液化制成液化树脂,再对液化树脂采用中低温发泡法制备发泡材料,系统地考虑了液化树脂黏度和固体质量分数、发泡温度以及表面活性剂、固化剂、发泡剂用量和种类等因素对制备工艺的影响。结果表明:适宜的发泡条件为杨木粉液化树脂黏度为6 000 mPa·s、固体质量分数为75%,发泡温度75 ℃,以吐温-80与OP-10(质量比1∶1)复配作为表面活性剂,以正戊烷为发泡剂,1,4-丁内酯为固化剂,用量都在8%~12%,该条件下发泡过程稳定,制得的泡沫泡孔细腻,均匀,闭孔率高,表观质量好,泡沫的表观密度小(0.12~0.16 g/cm3)并且发泡倍率高(5~8倍)。  相似文献   

11.
王启东  史铁钧  徐国梅 《化工学报》2013,64(10):3851-3857
以酚酞、烯丙胺、多聚甲醛为原料,合成了具有烯丙基的新型酚酞型苯并嗪树脂(PT-ala)。用FT-IR、1H NMR和DSC表征了其结构和固化特性,并用TG-DTG方法对其聚合物在氮气中的热分解过程动力学进行了详细的研究。结果表明:用Kissinger法和Ozawa法求得的聚合物热分解活化能分别为189.65 kJ·mol-1和215.11 kJ·mol-1;用Coats-Redfern法证实了酚酞烯丙胺型聚苯并嗪的热分解反应为一级反应;在氮气氛中维持60 s寿命的最高使用温度为285℃。  相似文献   

12.
以玉米秸秆为原料, 经溴化锂溶液溶解、叔丁醇溶液置换制备得到玉米秸秆全组分气凝胶, 利用单因素试验对制备条件进行优化, 并通过SEM、FT-IR、N2吸附-脱附试验和光学接触角等手段表征气凝胶相关性能。研究结果表明: 不同工况下, 溴化锂溶解玉米秸秆形成凝胶的时间均不超过10 min, 在较优条件(溴化锂质量分数66%、反应温度130 ℃、固液比1∶45(g∶g)、反应时间50 min)下制备的玉米秸秆全组分气凝胶密度可低至0.027 4 g/cm3, 比表面积为98.43 m2/g, 并具有超亲水性和超亲油性, 对去离子水和大豆油的最大吸附倍率分别为15.04和18.78 g/g。SEM分析表明制备的全组分气凝胶具有二维片状和三维网络结构; FT-IR分析表明全组分气凝胶中含有纤维素、半纤维素和木质素成分, 纤维素中的氢键网络被破坏。  相似文献   

13.
As a natural aromatic polymer, lignin has great potential but limited industrial application due to its complex chemical structure. Among strategies for lignin conversion, biodegradation has attracted promising interest recently in term of efficiency, selectivity and mild condition. In order to overcome the issues of poor stability and non-reusability of enzyme in the biodegradation of lignin, this work explored a protocol of immobilized laccase on magnetic nanoparticles (MNPs) with rough surfaces for enhanced lignin model compounds degradation. Scanning electron microscope with energy dispersive spectrometer (SEM-EDS), flourier transformation infrared spectroscopy (FTIR) and thermal gravimetric analysis (TGA) were utilized to characterize the immobilization of laccase. The results showed a maximum activity recovery of 64.7% towards laccase when it was incubated with MNPs and glutaraldehyde (GA) with concentrations of 6 mg·ml-1 and 7.5 mg·ml-1 for 5 h, respectively. The immobilized laccase showed improved thermal stability and pH tolerance compared with free laccase, and remained more than 80% of its initial activity after 20 days of storage at 4 ℃. In addition, about 40% residual activity of the laccase remained after 8 times cycles. Gas chromatography-mass spectrometry (GC-MS) was utilized to characterize the products of lignin model compound degradation and activation, and the efficiency of immobilized laccase was calculated to be 1-5 times that of free laccase. It was proposed that the synergistic effect between MNPs and laccase displays an important role in the enhancement of stability and activity in lignin model compound biodegradation.  相似文献   

14.
竹材液化树脂制发泡栽培基质材料工艺优化   总被引:1,自引:0,他引:1  
以竹材剩余物为原料,通过液化树脂化制备得到竹材液化树脂,再通过添加聚醚多元醇对竹材液化树脂进行改性,并利用正交试验优化制备工艺参数.结果表明:最优制备工艺参数为发泡体系总质量为200 g,树脂添加量30%,固化剂添加量7.5%,PM-200添加量20%,聚醚多元醇添加量1%,发泡剂添加量10%,表面活性剂添加量8%.此...  相似文献   

15.
This study performed catalytic depolymerization of alkali lignin over Ni-based catalysts. Effects of different promoters (Zr and W), Ni loadings, reaction temperatures, and the addition of formic acid and catalyst on lignin conversion and products distribution were all investigated. The result showed that the highest oil yield (40.1% (mass)) was obtained at 240?℃ over Ni1.2/γ-Al2O3 promoted by Zr and W species. Quantitative analysis indicates that Zr and W species prefer to lignin depolymerization while Ni active phase prefer to hydrodeoxygenation and hydrogenation. The interconversion of products derived from lignin depolymerization was determined by gas chromatography-mass spectrometer, which demonstrated that phenolic compounds were dominant products in all lignin derived bio-oils, wherein the proportion of vanillin was highest (65.7%) at 180?℃, while that of alkyl guaiacols increased with the increase of temperature (from 12.45% at 180?℃ to 66.67% at 240?℃). Residual lignin obtained after lignin depolymerization was also investigated for detecting differences on functional groups, wherein the disappearing peaks at 1511?cm?1 (stretching of aromatic rings), 1267, 1215 and 1035?cm?1 (vibrations of guaiacyl and syringyl units) were detected by Fourier transform infrared spectrometry. Additionally, the higher O/C ratio measured by elemental analysis also confirmed that alkali lignin was depolymerized effectively under mild conditions.  相似文献   

16.
以成型、烘焙处理后的玉米秸秆为原料,磷酸作为活化剂制备了玉米秸秆基活性炭,并对活性炭样品进行表征。同时以碘吸附值、亚甲基蓝吸附值和焦糖脱色率为指标测定其吸附性能,并对制备条件进行优化。实验结果表明:玉米秸秆制备活性炭的最佳工艺条件为浸渍比即m(55%H3PO4)∶m(玉米秸秆)为4∶1、活化温度400 ℃、活化时间100 min,此条件下活性炭的得率为47.78%,制得的活性炭具有良好的吸附性能,碘吸附值、亚甲基蓝吸附值及焦糖脱色率分别达到864 mg/g、210 mg/g和100%。活性炭比表面积可达1 105 m2/g,总孔容积为0.745 cm3/g,微孔孔容为0.287 cm3/g,中孔孔容为0.354 cm3/g,孔径分布集中于5 nm以内,约占73.56%,平均孔径为2.697 nm。FT-IR分析显示:在活化过程中磷酸与玉米秸秆发生交联作用,生成的活性炭损失了玉米秸秆的部分官能团。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号