首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Tian  Naishuo  Zhang  Zhe George 《Queueing Systems》2003,44(2):183-202
We study a GI/M/c type queueing system with vacations in which all servers take vacations together when the system becomes empty. These servers keep taking synchronous vacations until they find waiting customers in the system at a vacation completion instant.The vacation time is a phase-type (PH) distributed random variable. Using embedded Markov chain modeling and the matrix geometric solution methods, we obtain explicit expressions for the stationary probability distributions of the queue length at arrivals and the waiting time. To compare the vacation model with the classical GI/M/c queue without vacations, we prove conditional stochastic decomposition properties for the queue length and the waiting time when all servers are busy. Our model is a generalization of several previous studies.  相似文献   

2.
K. Sikdar  U. C. Gupta 《TOP》2005,13(1):75-103
We consider a finite buffer batch service queueing system with multiple vacations wherein the input process is Markovian arrival process (MAP). The server leaves for a vacation as soon as the system empties and is allowed to take repeated (multiple) vacations. The service- and vacation- times are arbitrarily distributed. We obtain the queue length distributions at service completion, vacation termination, departure, arbitrary and pre-arrival epochs. Finally, some performance measures such as loss probability, average queue lengths are discussed. Computational procedure has been given when the service- and vacation- time distributions are of phase type (PH-distribution).  相似文献   

3.
M/G/1 queues with server vacations have been studied extensively over the last two decades. Recent surveys by Boxma [3], Doshi [5] and Teghem [14] provide extensive summary of literature on this subject. More recently, Shanthikumar [11] has generalized some of the results toM/G/1 type queues in which the arrival pattern during the vacations may be different from that during the time the server is actually working. In particular, the queue length at the departure epoch is shown to decompose into two independent random variables, one of which is the queue length at the departure epoch (arrival epoch, steady state) in the correspondingM/G/1 queue without vacations. Such generalizations are important in the analysis of situations involving reneging, balking and finite buffer cyclic server queues. In this paper we consider models similar to the one in Shanthikumar [11] but use the work in the system as the starting point of our investigation. We analyze the busy and idle periods separately and get conditional distributions of work in the system, queue length and, in some cases, waiting time. We then remove the conditioning to get the steady state distributions. Besides deriving the new steady state results and conditional waiting time and queue length distributions, we demonstrate that the results of Boxma and Groenendijk [2] follow as special cases. We also provide an alternative approach to deriving Shanthikumar's [11] results for queue length at departure epochs.  相似文献   

4.
The paper investigates the queueing process in stochastic systems with bulk input, batch state dependent service, server vacations, and three post-vacation disciplines. The policy of leaving and entering busy periods is hysteretic, meaning that, initially, the server leaves the system on multiple vacation trips whenever the queue falls below r (⩾1), and resumes service when during his absence the system replenishes to N or more customers upon one of his returns. During his vacation trips, the server can be called off on emergency, limiting his trips by a specified random variable (thereby encompassing several classes of vacation queues, such as ones with multiple and single vacations). If by then the queue has not reached another fixed threshold M (⩽ N), the server enters a so-called “post-vacation period” characterized by three different disciplines: waiting, or leaving on multiple vacation trips with or without emergency. For all three disciplines, the probability generating functions of the discrete and continuous time parameter queueing processes in the steady state are obtained in a closed analytic form. The author uses a semi-regenerative approach and enhances fluctuation techniques (from his previous studies) preceding the analysis of queueing systems. Various examples demonstrate and discuss the results obtained. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
In this paper, we study an M/M/c queue with a three threshold vacation policy denoted by (e, d, N). With such a policy, the servers keep serving the customers until the number of idle servers reaches d and then e of d servers start taking a vacation together. These e servers keep taking vacations until the number of customers in the system is at least N at a vacation completion instant, then the e servers return to serve the queue again. Using the matrix analytic method, we obtain the stationary performance measures and prove the conditional stochastic decomposition properties for the waiting time and queue length. This model is a generalization of previous multi-server vacation models and offers a useful performance evaluation and system design tool in multi-task server queueing systems.  相似文献   

6.
We consider an infinite-buffer single server queue where arrivals occur according to a batch Markovian arrival process (BMAP). The server serves until system emptied and after that server takes a vacation. The server will take a maximum number H of vacations until either he finds at least one customer in the queue or the server has exhaustively taken all the vacations. We obtain queue length distributions at various epochs such as, service completion/vacation termination, pre-arrival, arbitrary, departure, etc. Some important performance measures, like mean queue lengths and mean waiting times, etc. have been obtained. Several other vacation queueing models like, single and multiple vacation model, queues with exceptional first vacation time, etc. can be considered as special cases of our model.  相似文献   

7.
This paper studies the operating characteristics of an M[x]/G/1 queueing system under a modified vacation policy, where the server leaves for a vacation as soon as the system is empty. The server takes at most J vacations repeatedly until at least one customer is found waiting in the queue when the server returns from a vacation. We derive the system size distribution at different points in time, as well as the waiting time distribution in the queue. Further, we derive some important characteristics including the expected length of the busy period and idle period. This shows that the results generalize those of the multiple vacation policy and the single vacation policy M[x]/G/1 queueing system. Finally, a cost model is developed to determine the optimum of J at a minimum cost. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Consider a GI/M/1 queue with phase-type working vacations and vacation interruption where the vacation time follows a phase-type distribution. The server takes the original work at the lower rate during the vacation period. And, the server can come back to the normal working level at a service completion instant if there are customers at this instant, and not accomplish a complete vacation. From the PH renewal process theory, we obtain the transition probability matrix. Using the matrix-analytic method, we obtain the steady-state distributions for the queue length at arrival epochs, and waiting time of an arbitrary customer. Meanwhile, we obtain the stochastic decomposition structures of the queue length and waiting time. Two numerical examples are presented lastly.  相似文献   

9.
We study the steady-state queue length and waiting time of the M/G/1 queue under the D-policy and multiple server vacations. We derive the queue length PGF and the LSTs of the workload and waiting time. Then, the mean performance measures are derived. Finally, a numerical example is presented and the effects of employing the D-policy are discussed. AMS Subject Classifications 60K25 This work was supported by the SRC/ERC program of MOST/KOSEF grant # R11-2000-073-00000.  相似文献   

10.
Many researchers have studied variants of queueing systems with vacations. Most of them have dealt with M/G/1 systems and have explicitly analyzed some of their performance measures, such as queue length, waiting time, and so on. Recently, studies on queueing systems whose arrival processes are not Poissonian have appeared. We consider a single server queueing system with multiple vacations and E-limited service discipline, where messages arrive to the system according to a switched Poisson process. First, we consider the joint probability density functions of the queue length and the elapsed service time or the elapsed vacation time. We derive the equations for these pdf's, which include a finite number of unknown values. Using Rouché's theorem, we determine the values from boundary conditions. Finally, we derive the transform of the stationary queue length distribution explicitly.  相似文献   

11.
In this paper, we study a renewal input working vacations queue with state dependent services and Bernoulli-schedule vacations. The model is analyzed with single and multiple working vacations. The server goes for exponential working vacation whenever the queue is empty and the vacation rate is state dependent. At the instant of a service completion, the vacation is interrupted and the server resumes a regular busy period with probability 1???q (if there are customers in the queue), or continues the vacation with probability q (0?≤?q?≤?1). We provide a recursive algorithm using the supplementary variable technique to numerically compute the stationary queue length distribution of the system. Finally, using some numerical results, we present the parameter effect on the various performance measures.  相似文献   

12.
Zhang  Zhe G.  Tian  Naishuo 《Queueing Systems》2003,45(2):161-175
We study a multi-server M/M/c type queue with a single vacation policy for some idle servers. In this queueing system, if at a service completion instant, any d (d c) servers become idle, these d servers will take one and only one vacation together. During the vacation of d servers, the other cd servers do not take vacation even if they are idle. Using a quasi-birth-and-death process and the matrix analytic method, we obtain the stationary distribution of the system. Conditional stochastic decomposition properties have been established for the waiting time and the queue length given that all servers are busy.  相似文献   

13.
This paper studies the operating characteristics of an M[x]/G/1 queueing system with N-policy and at most J vacations. The server takes at most J vacations repeatedly until at least N customers returning from a vacation are waiting in the queue. If no customer arrives by the end of the Jth vacation, the server becomes idle in the system until the number of arrivals in the queue reaches N. We derive the system size distribution at a random epoch and departure epoch, as well as various system characteristics.  相似文献   

14.
This paper examines a discrete-time Geo/G/1 queue, where the server may take at most J − 1 vacations after the essential vacation. In this system, messages arrive according to Bernoulli process and receive corresponding service immediately if the server is available upon arrival. When the server is busy or on vacation, arriving messages have to wait in the queue. After the messages in the queue are served exhaustively, the server leaves for the essential vacation. At the end of essential vacation, the server activates immediately to serve if there are messages waiting in the queue. Alternatively, the server may take another vacation with probability p or go into idle state with probability (1 − p) until the next message arrives. Such pattern continues until the number of vacations taken reaches J. This queueing system has potential applications in the packet-switched networks. By applying the generating function technique, some important performance measures are derived, which may be useful for network and software system engineers. A cost model, developed to determine the optimum values of p and J at a minimum cost, is also studied.  相似文献   

15.
This paper considers the bi-level control of an M/G/1 queueing system, in which an un-reliable server operates N policy with a single vacation and an early startup. The server takes a vacation of random length when he finishes serving all customers in the system (i.e., the system is empty). Upon completion of the vacation, the server inspects the number of customers waiting in the queue. If the number of customers is greater than or equal to a predetermined threshold m, the server immediately performs a startup time; otherwise, he remains dormant in the system and waits until m or more customers accumulate in the queue. After the startup, if there are N or more customers waiting for service, the server immediately begins serving the waiting customers. Otherwise the server is stand-by in the system and waits until the accumulated number of customers reaches or exceeds N. Further, it is assumed that the server breaks down according to a Poisson process and his repair time has a general distribution. We obtain the probability generating function in the system through the decomposition property and then derive the system characteristics  相似文献   

16.
This paper considers a like-queue production system in which server vacations and breakdowns are possible. The decision-maker can turn a single server on at any arrival epoch or off at any service completion. We model the system by an M[x]/M/1 queueing system with N policy. The server can be turned off and takes a vacation with exponential random length whenever the system is empty. If the number of units waiting in the system at any vacation completion is less than N, the server will take another vacation. If the server returns from a vacation and finds at least N units in the system, he immediately starts to serve the waiting units. It is assumed that the server breaks down according to a Poisson process and the repair time has an exponential distribution. We derive the distribution of the system size through the probability generating function. We further study the steady-state behavior of the system size distribution at random (stationary) point of time as well as the queue size distribution at departure point of time. Other system characteristics are obtained by means of the grand process and the renewal process. Finally, the expected cost per unit time is considered to determine the optimal operating policy at a minimum cost. The sensitivity analysis is also presented through numerical experiments.  相似文献   

17.
Single server M/G/1-queues with an infinite buffer are studied; these permit inclusion of server vacations and setup times. A service discipline determines the numbers of customers served in one cycle, that is, the time span between two vacation endings. Six service disciplines are investigated: the gated, limited, binomial, exhaustive, decrementing, and Bernoulli service disciplines. The performance of the system depends on three essential measures: the customer waiting time, the queue length, and the cycle duration. For each of the six service disciplines the distribution as well as the first and second moment of these three performance measures are computed. The results permit a detailed discussion of how the expected value of the performance measures depends on the arrival rate, the customer service time, the vacation time, and the setup time. Moreover, the six service disciplines are compared with respect to the first moments of the performance measures.  相似文献   

18.
研究了带有止步和中途退出的M~x/M/1/N单重工作休假排队系统.顾客成批到达,到达后每批中的顾客,或者以概率b决定进入队列等待服务,或者以概率1-b止步(不进入系统).顾客进入系统后可能因为等待的不耐烦而在没有接受服务的情况下离开系统(中途退出).系统中一旦没有顾客,服务员立即进入单重工作休假.首先,利用马尔科夫过程理论建立了系统稳态概率满足的方程组.其次利用矩阵解法求出了稳态概率的矩阵解并得到了系统的平均队长、平均等待队长以及顾客的平均消失概率等性能指标.最后通过数值例子分析了工作休假时的低服务率η和休假率θ这两个参数对系统平均队长的影响.  相似文献   

19.
This paper studies the operating characteristics of an M[x]/G/1 queueing system under a variant vacation policy, where the server leaves for a vacation as soon as the system is empty. The server takes at most J vacations repeatedly until at least one customer is found waiting in the queue when the server returns from a vacation. If the server is busy or on vacation, an arriving batch balks (refuses to join) the system with probability 1 − b. We derive the system size distribution at different points in time, as well as the waiting time distribution in the queue. Finally, important system characteristics are derived along with some numerical illustration.  相似文献   

20.
We consider a discrete-time single server N  -policy GI/Geo/1GI/Geo/1 queueing system. The server stops servicing whenever the system becomes empty, and resumes its service as soon as the number of waiting customers in the queue reaches N. Using an embedded Markov chain and a trial solution approach, the stationary queue length distribution at arrival epochs is obtained. Furthermore, we obtain the stationary queue length distribution at arbitrary epochs by using the preceding result and a semi-Markov process. The sojourn time distribution is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号