首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本文对华北克拉通三个不同地区(河北汉诺坝、内蒙古集宁三义堂、河南鹤壁)新发现的含金云母尖晶石二辉橄榄岩和尖晶石橄榄单斜辉石岩捕虏体进行了详细的矿物组成、单斜辉石的微量元素和Sr-Nd同位素研究.通过与相同地区不含金云母尖晶石二辉橄榄岩捕虏体的系统对比发现通常含金云母的地幔橄榄岩比不含金云母的地幔橄榄岩岩富Al2O3、CaO、NaO、K2O、TiO2,但相对贫镁;其单斜辉石的LREE更为富集,但Sr、Nd同位素组成则相对亏损.这说明地幔交代作用不仅能够造成地幔橄榄岩的玄武质组分和稀土元素的富集,而且亦能够造成全岩和橄榄石Mg#的降低和同位素组成的相对亏损.捕虏体的Rb-Sr等时线年龄暗示地幔交代作用发生在中、新生代;其交代熔体来源于软流圈.同时说明华北新生代岩石圈地幔普遍存在的主、微量元素和同位素组成类似于“大洋型”岩石圈地幔的特征很可能是岩石圈地幔橄榄岩与软流圈来源的熔体的大规模反应的结果,而非真正意义上的新增生的岩石圈地幔.  相似文献   

2.
华北东部晚中生代中基性侵入杂岩体(如山东莱芜地区铁铜沟岩体;山东潍坊地区金岭.湖田岩体;河北邯邢地区符山岩体)中常含有橄榄岩捕虏体。这些橄榄岩的来源和成因问题存在很大争议,主要有堆晶成因或代表古老洋壳蛇绿岩和岩石圈地幔来源两种观点。本文在对山东潍坊地区金岭一湖田岩体中橄榄岩捕虏体的研究成果和总结前人资料的基础上,通过岩石学、矿物学和地球化学研究认为这些橄榄岩捕虏体皆是堆晶成因或代表古老洋壳蛇绿岩,而非岩石圈地幔直接样品。因此,不能用这些橄榄岩捕虏体的组成来反演该地区晚中生代岩石圈地幔特征。  相似文献   

3.
在无水"干"体系的四矿物相橄榄岩中,单斜辉石由于熔点低而通常记录着丰富的部分熔融作用和地幔交代作用信息。在详细岩相学特征和组成矿物主元素分析基础上,重点对内蒙古集宁玄武岩中橄榄岩包体的单斜辉石进行了激光原位微量元素研究。通过与新生代时华北具古老克拉通地幔特征(如鹤壁)和具新生岩石圈地幔特征(如山旺)的橄榄岩对比,讨论了新生代时集宁地区陆下岩石圈地幔性质及其形成和演化机制。集宁地区岩石圈地幔是相当于原始地幔经过较低程度的部分熔融抽取形成的,除个别样品的部分熔融程度5%外,多数样品为5%~10%。橄榄岩的平衡温度与橄榄石Mg#关系表明新生代时集宁地区的陆下岩石圈地幔是不均一的,无明显分层现象,表现为饱满与过渡型地幔的共存。这种主体饱满并兼有过渡型地幔的不均一现象,可能是软流圈物质对古老地幔进行不均匀侵蚀、改造和置换作用的结果。  相似文献   

4.
鲁江姑  郑建平 《地质学报》2011,85(3):330-342
内容提要:在对吉林辉南新生代玄武岩中捕虏体橄榄岩详细的岩相学和矿物主量元素研究基础上,重点分析了单斜辉石激光原位微量元素,并讨论了辉南陆下岩石圈地幔的性质及其在华北克拉通破坏过程中的意义。橄榄石、单斜辉石和尖晶石的Mg#和Cr#均表明该区陆下岩石圈地幔主体是饱满的,同时也存在少量过渡和难熔型地幔。单斜辉石REE配分形式包括LREE亏损、倒U字型REE和LREE富集等不同类型。这些橄榄岩是地幔经历不同程度的部分熔融作用(低于10%)和复杂地幔交代作用的产物。交代介质主体是硅酸盐熔体,但个别样品有碳酸岩熔体交代的残留。橄榄石Mg#和平衡温度无相关性,说明辉南陆下岩石圈地幔不存在明显的分层而是交叉的。这些地幔特征和华北东部其他地区新生代的主体地幔性质相似,是熔-岩反应、侵蚀作用和上涌软流圈物质冷却转变置换的综合结果。  相似文献   

5.
基于最新的同位素年代学资料 ,华北克拉通东部中生代的岩浆作用可划分成四个阶段 ,即晚三叠世 ( 2 0 5~ 2 2 5Ma)碱性岩浆作用 ;中晚侏罗世 ( 1 5 5~ 1 6 0Ma)花岗质岩浆作用 ;早白垩世 ( 1 1 2~ 1 32Ma)双峰式岩浆作用和晚白垩世 ( 92~ 73Ma)碱性玄武质岩浆作用。徐淮地区中生代侵入岩中榴辉岩捕虏体的发现及其地质年代学资料 ( 2 1 9Ma)表明 ,华北克拉通东部中生代早期曾发生过一次重要的陆壳加厚过程。俯冲板片的断离以及高压—超高压变质岩的快速折返和晚三叠世 ( 2 0 5~ 2 2 5Ma)的碱性岩浆作用的存在均暗示 ,华北克拉通中生代岩石圈减薄已经开始。拆沉作用则是引起中生代早期岩石圈减薄的主要机制。中、晚侏罗世 ( 1 5 5~ 1 6 0Ma)花岗质岩浆作用形成于造山期后的伸展环境 ,代表了中生代岩石圈减薄的继续和发展。早白垩世 ( 1 1 2~ 1 32Ma)双峰式岩浆作用表明中生代岩石圈减薄达到了峰期。而幔源纯橄岩捕虏体中富硅质熔体的交代作用和玄武岩的高87Sr/ 86Sr值、低ε(Nd ,t)值特征表明 ,软流圈对岩石圈底部的化学侵蚀可能是导致该阶段岩石圈减薄的主导机制。晚白垩世 ( 92~ 73Ma)碱性玄武质岩浆作用和“海洋型”地幔捕虏体的存在代表了等温面的下降和岩石圈地幔的增生  相似文献   

6.
华北克拉通中生代破坏前的岩石圈地幔与下地壳   总被引:12,自引:11,他引:12  
翟明国 《岩石学报》2008,24(10):2185-2204
华北克拉通是世界上最古老的克拉通之一,有 38亿年的古老陆壳存在,它经历了复杂的地质变迁,在太古宙末(约2500Ma)基本完成克拉通化,在古元古代(约1900~1850Ma)整体受到了高级变质作用,最终完成了克拉通化。它的东部在中生代发生了重大的构造机制的转变,克拉通基底发生了破坏、置换和再造。在太行山重力梯度带以西的华北克拉通受中生代构造转折的改造程度较低,它们的下地壳和岩石圈地幔结构,大致保持了华北克拉通破坏前的状态。前寒武纪麻粒岩地体代表了掀翻抬升到地表的古元古代下地壳,出露地表的时间大致在1850~1800Ma。中、新生代火山岩中的地幔和麻粒岩捕虏体代表了现代的岩石圈地幔和下地壳的岩石。岩石学、地球化学和地球物理的研究,推测华北克拉通西部的岩石圈厚约200km,地壳厚度约45km~50km,是在古元古代(约1.9Ga)时期终极克拉通化作用形成的,其厚度和结构与全球典型的元古宙克拉通岩石圈相同。而太行山重力梯度带以东的克拉通岩石圈地幔受到程度不等的交代、改造、置换和减薄,下地壳大规模重熔,地壳厚度也发生减薄,指示了强烈的壳幔解耦、物质交换和重新耦合的过程。  相似文献   

7.
华北中、新生代玄武质火山岩和基性脉岩携带的地慢橄榄岩捕虏体中橄榄石和/或橄榄石捕虏晶系统的组成填图显示华北东部中、新生代岩石圈地幔存在明显的时空分布规律和不均一性。这与通过岩石圈地幔源基性岩石的地球化学反演获得的华北中生代岩石圈地幔的时空不均一性及其块体特征完全一致。太行山和鲁皖地区新生代岩石圈地慢的差异演化主要反映古老地幔橄榄岩与熔体相互作用时熔体性质和来源的不同。同时,橄榄石Fo填图还揭示了郯庐断裂对华北东部中、新生代基性岩浆活动及其岩石圈地幔演化的重要制约作用。而且,华北东部中生代岩石圈减薄后尚存古老岩石圈地幔残留。因此,华北东部岩石圈减薄的整体拆沉模式很难成立。  相似文献   

8.
Previous studies of samples of subcontinental lithospheric mantle (SCLM) that underlay the North China Craton (NCC) during the Paleozoic have documented the presence of thick Archean SCLM at this time. In contrast, samples of SCLM underlying the NCC during the Cenozoic are characterized by evidence for melt depletion during the Proterozoic, and relatively recent juvenile additions to the lithosphere. These observations, coupled with geophysical evidence for relatively thin lithosphere at present, have led to the conclusion that the SCLM underlying the NCC was thinned and modified subsequent to the late Paleozoic. In order to extend the view into both the Paleozoic and modern SCLM underlying the NCC, we examine mantle xenoliths and xenocrystic chromites extracted from three Paleozoic kimberlites (Tieling, Fuxian and Mengyin), and mantle xenoliths extracted from one Cenozoic basaltic center (Kuandian). Geochemical data suggest that most of the Kuandian xenoliths are residues of small degrees of partial melting from chemically primitive mantle. Sr-Nd-Hf isotopic analyses indicate that the samples were removed from long-term depleted SCLM that had later been variably enriched in incompatible elements. Osmium isotopic compositions of the two most refractory xenoliths are depleted relative to the modern convecting upper mantle and have model melt depletion ages that indicate melt depletion during Paleoproterozoic. Other relatively depleted xenoliths have Os isotopic compositions consistent with the modern convecting upper mantle. This observation is generally consistent with earlier data for xenoliths from other Cenozoic volcanic systems in the NCC and surrounding cratons. Thus, the present SCLM underlying the NCC has a complex age structure, but does not appear to retain materials with Archean melt depletion ages. Results for what are presumed to be early Paleozoic xenoliths from Teiling are generally highly depleted in melt components, e.g. have low Al2O3, but have also been metasomatically altered. Enrichment in light rare earth elements, low εNd values (∼−10), and relatively high 87Sr/86Sr (0.707-0.710) are consistent with a past episode of metasomatism. Despite the metasomatic event, 187Os/188Os ratios are low and consistent with a late Archean melt depletion event. Thus, like results for xenoliths from other early Paleozoic volcanic centers within the NCC, these rocks sample dominantly Archean SCLM. The mechanism for lithospheric thinning is still uncertain. The complex age structure currently underlying the NCC requires either variable melt depletion over the entire history of this SCLM, or the present lithospheric material was partly or wholly extruded under the NCC from elsewhere by the plate collisions (collision with the Yangtze Craton and/or NNW subduction of the Pacific plate) that may have caused the thinning to take place.  相似文献   

9.
Nominally anhydrous phases (clinopyroxene (cpx), orthopyroxene (opx), and olivine (ol)) of peridotite xenoliths hosted by the Cenozoic basalts from Beishan (Hebei province), and Fansi (Shanxi province), Western part of the North China Craton (WNCC) have been investigated by Fourier transform infrared spectrometry (FTIR). The H2O contents (wt.) of cpx, opx and ol are 30–255 ppm, 14–95 ppm and ~ 0 ppm, respectively. Although potential H-loss during xenolith ascent cannot be excluded for olivine, pyroxenes (cpx and opx) largely preserve the H2O content of their mantle source inferred from (1) the homogenous H2O content within single pyroxene grains, and (2) equilibrium H2O partitioning between cpx and opx. Based on mineral modes and assuming a partition coefficient of 10 for H2O between cpx and ol, the recalculated whole-rock H2O contents range from 6 to 42 ppm. In combination with previously reported data for other two localities (Hannuoba and Yangyuan from Hebei province), the H2O contents of cpx, opx and whole-rock of peridotite xenoliths (43 samples) hosted by the WNCC Cenozoic basalts range from 30 to 654 ppm, 14 to 225 ppm, and 6 to 262 ppm respectively. The H2O contents of the Cenozoic lithospheric mantle represented by peridotite xenoliths fall in a similar range for both WNCC and the eastern part of the NCC (Xia et al., 2010, Journal of Geophysical Research). Clearly, the Cenozoic lithospheric mantle of the NCC is dominated by much lower water content compared to the MORB source (50–250 ppm). The low H2O content is not caused by oxidation of the mantle domain, and likely results from mantle reheating, possibly due to an upwelling asthenospheric flow during the late Mesozoic–early Cenozoic lithospheric thinning of the NCC. If so, the present NCC lithospheric mantle mostly represents relict ancient lithospheric mantle. Some newly accreted and cooled asthenospheric mantle may exist in localities close to deep fault.  相似文献   

10.
凉城、四子王旗、三义堂和大同的地幔包体的岩石学和矿物的主、微量元素成分显示华北克拉通中、西部北缘总体为过渡型岩石圈地幔,为原始地幔经过不同程度的熔体抽取和后期交代富集作用的残留.凉城岩石圈地幔经历的熔体抽取程度最低,后期交代富集作用比较强烈,这与其橄榄岩中尖晶石的Cr#较低,并且共存的单斜辉石的Mg#较低一致.三义堂岩石圈地幔经历的熔体抽取程度最高,后期交代富集作用最强烈,不同样品甚至同一样品中不同单斜辉石颗粒的La/Yb和LREE配分模式变化范围非常大,且矿物边部比核部更富集微量元素.大同、四子王旗岩石圈地幔经历的熔体抽取程度介于凉城和三义堂之间,但后期的交代富集作用明显不如凉城和三义堂强烈.研究区的岩石圈地幔主要受硅酸盐熔体交代作用的影响,只有三义堂岩石圈地幔还可能也受到了碳酸盐交代作用的影响.  相似文献   

11.
The petrology, mineral compositions, whole rock major/trace element concentrations, including highly siderophile elements, and Re-Os isotopes of 99 peridotite xenoliths from the central North China Craton were determined in order to constrain the structure and evolution of the deep lithosphere. Samples from seven Early Cretaceous-Tertiary volcanic centers display distinct geochemical characteristics from north to south. Peridotites from the northern section are generally more fertile (e.g., Al2O3 = 0.9-4.0%) than those from the south (e.g., Al2O3 = 0.2-2.2%), and have maximum whole-rock Re-depletion Os model ages (TRD) of ∼1.8 Ga suggesting their coeval formation in the latest Paleoproterozoic. By contrast, peridotites from the south have maximum TRD model ages that span the Archean-Proterozoic boundary (2.1-2.5 Ga). Peridotites with model ages from both groups are found at Fansi, the southernmost locality in the northern group, which likely marks a lithospheric boundary. The Neoarchean age of the lithospheric mantle in the southern section matches that of the overlying crust and likely reflects the time of amalgamation of the North China Craton via collision between the Eastern and Western blocks. The Late Paleoproterozoic (∼1.8 Ga) lithospheric mantle beneath the northern section is significantly younger than the overlying Archean crust, indicating that the original lithospheric mantle was replaced in this region, either during a major north-south continent-continent collision that occurred during assembly of the Columbia supercontinent at ∼1.8-1.9 Ga, or from extrusion of ∼1.9 Ga lithosphere from the Khondalite Belt beneath the northern Trans-North China Orogen, during the ∼1.85 Ga continental collision between Eastern and Western blocks. Post-Cretaceous heating of the southern section is indicated by high temperatures (>1000 °C) recorded in peridotites from the 4 Ma Hebi suite, which are significantly higher than the temperatures recorded in peridotites from the nearby Early Cretaceous Fushan suite (<720 °C), and likely reflects significant lithospheric thinning after the Early Cretaceous. Combining previous Os isotope results on mantle xenoliths from the eastern North China Craton with our new data, it appears that lithospheric thinning and replacement may have evolved from east to west with time, commencing before the Triassic on the eastern edge of the craton, occurring during the Jurassic-Cretaceous within the interior, and post-dating 125 Ma on the westernmost boundary.  相似文献   

12.
在华北克拉通东部鲁西—徐淮地区,存在一套辉石闪长岩-二长闪长岩-花岗闪长岩组成的adakitic岩石。锆石SHRI MP和LA-ICP-MS U-Pb定年结果表明它们形成于早白垩世(130~132Ma)。该类岩石具有较高的MgO含量(质量分数为1·46%~9·76%)、高的Mg#值(0·46~0·68)和高的Sr/Y值(主体介于30~52之间,个别高达410)。这些特征类似于由俯冲大洋板片部分熔融形成的adakitic岩石。然而,它们所表现出来的相对较高的87Sr/86Sr初始比值(0·7051~0·7077)和较低的εNd(t)值(-4·43~-15·92)则反映岩浆形成或演化过程中应有陆壳物质的参与。徐淮地区该类岩石中榴辉岩类捕虏体和石榴石捕虏晶的存在和鲁西辉石闪长岩中众多地幔橄榄岩捕虏体的发现,以及这些捕虏体中普遍发育富硅质交代作用,由此可以判定该类岩浆应起源于拆沉下部大陆地壳的部分熔融及其在上升过程中与地幔橄榄岩的反应,石榴石作为残留相。华北克拉通东部早白垩世adakitic岩石的存在以及榴辉岩类捕虏体的年代学表明,中生代早期曾存在一次重要的陆壳加厚过程,之后相继出现的加厚岩石圈的拆沉应是中生代岩石圈减薄的主导机制。  相似文献   

13.
We explore Fe/Mn and Nb/Ta ratios of basalts as potential tracers for differentiating melts of recycled mafic crustal lithologies from peridotitic melts. Trace elements and Fe/Mn ratios of the Mesozoic and Cenozoic basalts from East China were analyzed by ICP-MS. Low Nb/Ta ratios (15.4 ± 0.3 (2σ, n = 45)), high Nb and Ta contents (60.1 and 4.01 ppm) and high Fe/Mn ratios (64.7 ± 1.5 (2σ, n = 45)) characterize the <110 Ma basalts. Mesozoic basalts with ages >110 Ma are characterized by superchondritic Nb/Ta ratios (20.1 ± 0.3 (2σ, n = 25)), low Nb and Ta contents (10.8 and 0.54 ppm) and slightly lower Fe/Mn ratios (60.0 ± 1.1 (2σ, n = 25)). Both the Mesozoic and Cenozoic basalts have Fe/Mn ratios higher than basaltic melt formed by partial melting of peridotite at the same MgO and CaO levels. Although both the Mesozoic and Cenozoic basalts are characterized by highly fractionated REE patterns, the >110 Ma basalts have island arc-type trace element patterns (i.e., depletion in Nb and Ta), whereas OIB-type trace element patterns (e.g., no depletion in Nb and Ta) are characteristic of the <110 Ma basalts. Based on DFe/Mn values for olivine, clinopyroxene, orthopyroxene and garnet, high Fe/Mn ratios and negative correlations of Fe/Mn with Yb (Y) of the <110 Ma basalts suggest clinopyroxene/garnet-rich mantle sources. The lower Fe/Mn ratios and positive correlations of Fe/Mn with Y and Yb in the >110 Ma basalts suggest orthopyroxene/garnet-rich mantle sources. Combining these data with Sr-Nd isotopes, we present a conceptual model to explain the Nb/Ta ratios and PM-normalized trace element patterns of the >110 and <110 Ma basalts. Preferential melting of recycled ancient lower continental crust during Mesozoic lithospheric thinning resulted in (1) peridotite-melt/fluid reaction that formed the orthopyroxene/garnet-rich mantle sources for the >110 Ma basalts, and (2) peridotite + rutile-bearing eclogite mixing that formed the clinopyroxene/garnet-rich mantle sources for the <110 Ma basalts. The choice of models may indeed be arbitrary and non-unique, but the goal is to seek relatively simple forward models that explain the characteristics of the lavas, and the differences between the >110 and <110 Ma basalts, in a relatively consistent geodynamic framework.  相似文献   

14.
The Mesozoic lithospheric mantle beneath the North China craton remains poorly constrained relative to its Palaeozoic and Cenozoic counterparts due to a lack of mantle xenoliths in volcanic rocks. Available data show that the Mesozoic lithospheric mantle was distinctive in terms of its major, trace element, and isotopic compositions. The recent discovery of mantle peridotitic xenoliths in Late Cretaceous mafic rocks in the Jiaodong region provides an opportunity to further quantify the nature and secular evolution of the Mesozoic lithospheric mantle beneath the region. These peridotitic xenoliths are all spinel-facies nodules and two groups, high-Mg# and low-Mg# types, can be distinguished based on textural and mineralogical features. High-Mg# peridotites have inequigranular textures, high Mg# (up to 92.2) in olivines, and high Cr# (up to 55) in spinels. Clinopyroxenes in the high-Mg# peridotites are generally LREE-enriched ((La/Yb)N>1) with variable REE concentrations, and have enriched Sr–Nd isotopic compositions (87Sr/86Sr = 0.7046–0.7087; 143Nd/144Nd = 0.5121–0.5126). We suggest that the high-Mg# peridotites are fragments of the Archaean and/or Proterozoic lithospheric mantle that underwent extensive interaction with both carbonatitic and silicate melts prior to or during Mesozoic time. The low-Mg# peridotites are equigranular, are typified by low Mg# ( < 90) in olivines, and by low Cr# ( < 12) in spinels. Clinopyroxenes from low-Mg# peridotites have low REE abundances (ΣREE = 12 ppm), LREE-depleted REE patterns ((La/Yb)N < 1), and depleted Sr–Nd isotopic features, in contrast to the high-Mg# peridotites. These geochemical characteristics suggest that the low-Mg# peridotites represent samples from the newly accreted lithospheric mantle. Combined with the data of mantle xenoliths from the Junan and Daxizhuang areas, a highly heterogeneous, secular evolution of the lithosphere is inferred for the region in Late Cretaceous time.  相似文献   

15.
Mesozoic alkaline intrusive complexes are widespread in the southern portion of the North China Craton and can provide some important constraints on the evolution of the Mesozoic lithosphere beneath the region. Three selected intrusive complexes (Tongshi, Hongshan, and Longbaoshan) are generally high in alkalis (K2O+Na2O=913 wt.%) and Al2O3 (1421.6 wt.%) and low in CaO and TiO2 (<0.6 wt.%), with high and variable SiO2 contents. Rocks from these complexes are all enriched in LREE and LILE (Cs, Rb, Ba, U, Th), depleted in Nb and Ti, have a highly positive Pb anomaly, and are characterized by lack of a clear Eu anomaly despite trace element abundances and isotopic ratios that vary greatly between complexes. The Tongshi complex has high Cs (2.68.5 ppm) and REE abundances (∑REE=112.6297 ppm, (La/Yb)N=13.130.9) and MORB-like Sr–Nd–Pb isotopic ratios ((87Sr/86Sr)i<0.704; εNd>0; (206Pb/204Pb)i>18). The Hongshan complex has low REE concentrations (∑REE=28.2118.7 ppm, (La/Yb)N=4.614.7) and is moderately enriched as demonstrated by their Sr–Nd isotopic ratios ((87Sr/86Sr)i>0.706; εNd<−7). The Longbaoshan complex is extremely REE enriched (∑REE=211.3392.6 ppm, (La/Yb)N=32.460.9) and has an EM2-like Sr–Nd isotopic character ((87Sr/86Sr)i>0.7078; εNd<−11). We suggest that the Tongshi complex originated from the asthenosphere and the Hongshan complex and the Longbaoshan complex were derived from the partial melting of previously subduction-modified lithospheric mantle, in response to post-collisional lithospheric extension and asthenospheric upwelling. The occurrence of these alkaline intrusive complexes demonstrates that the lithosphere beneath the region must have been considerably thinned at the time of intrusion of these complexes. This study also shed light on the temporal evolution of the Mesozoic lithosphere and the timing of the lithospheric thinning.  相似文献   

16.
路凤香 《中国地质》2010,37(4):1102-1111
华北克拉通古老岩石圈地幔演化过程中有3种深部地质作用最为重要:①岩浆的萃取作用;②不同来源的熔/流体对岩石圈的交代作用;③软流圈及其熔体与岩石圈的相互作用。在蒙阴金伯利岩的捕虏体样品中发现有早晚两期斜方辉石,前者是早期粗粒结构橄榄岩残留的矿物;后者是晚期地幔发生塑性流变后形成的辉石。本文对比了蒙阴和复县两岩区以及南非两种典型结构橄榄岩捕虏体的主、微量元素,发现较晚期的具剪切结构的橄榄岩难熔程度反而低于较早期的具粗粒结构者。粗粒结构的Mg’值都大于0.90(0.902~0.93),Al2O3含量变化于0.22%~2.32%;而具剪切结构者Mg’值都小于0.90(0.86~0.88),Al2O3含量变化于1.69%~2.75%。表明地幔成分演化时不仅存在受第①种作用制约的地幔不断贫瘠/难熔的正向演化,而且还存在受第③种作用制约的地幔由贫瘠转向饱满的"逆向"演化趋势。经粗略对比后,推测在约3Ga的这段地质历史时期内华北克拉通古老岩石圈地幔至少出现过2次岩浆萃取事件和两次"逆向演化"过程。与显生宙的相比,出现在古老岩石圈地幔中的第③种作用规模小,强度低,不均一性更为明显。  相似文献   

17.
We present detailed geochronological, geochemical and Sr-Nd-Pb isotopic data for late Mesozoic mafic intrusions in the Taili region (western Liaodong Province) of the eastern North China Craton (NCC). We obtained laser-ablation inductively-coupled plasma mass spectrometry U-Pb zircon ages from lamprophyres with ages ranging from 139 to 162 Ma and diorites with clusters of ages at 226 ± 11 Ma, 165 ± 5.8 Ma and 140 ± 4.8 Ma. We interpret the Triassic zircons in diorites to be inherited from the Paleo-Asian Ocean slab. Both the lamprophyres and diorites contain abundant inherited grains (2644–2456 Ma) that were likely derived from the ancient NCC basement, reflecting a contribution from old lower crustal material. Like contemporaneous late Mesozoic mafic rocks in the Jiaodong and Liaodong Peninsula areas of the NCC, the Taili lamprophyres reveal a strong subduction signature in their normalized trace element patterns, including depletion of high field strength elements and enrichment of large ion lithophile elements. The rare-earth element patterns of the Taili intermediate-mafic intrusions are best explained if they were principally derived from partial melting of amphibole-bearing lherzolite in the spinel-garnet transition zone. Slab-derived melts likely contributed to the formation of late Mesozoic mafic rocks along three margins of the craton: due to accretion of the Yangtze Block along the southern margin of the craton, subduction of the Paleo-Asian Ocean along the northern margin, and subduction of the Paleo-Pacific oceanic plate along the eastern margin of NCC. We present a synthesis of the geochemical, spatial, and temporal patterns of magmatic rocks and periods of deformation that contributed to decratonization of the NCC in response to the Mesozoic tectonic evolution of adjacent plates along its northern, southern, and eastern margins.  相似文献   

18.
The petrology and geochemistry of peridotite xenoliths in the Cenozoic basalts from Fanshi, the central North China Craton (NCC), provide constraints on the evolution of sub-continental lithospheric mantle. These peridotite xenoliths are mainly spinel-facies lherzolites with minor harzburgites. The lherzolites are characterized by low forsterite contents in olivines (Fo < 91) and light rare earth element (LREE) enrichments in clinopyroxenes. In contrast, the harzburgites are typified by high-Fo olivines (> 91), high-Cr# spinels and clinopyroxenes with low abundances of heavy REE (HREE). These features are similar to those from old refractory lithospheric mantle around the world, and thus interpreted to be relics of old lithospheric mantle. The old lithospheric mantle has been chemically modified by the influx of melts, as evidenced by the Sr–Nd isotopic compositions of clinopyroxenes and relatively lower Fo contents than typical Archean lithospheric mantle (Fo > 92.5). The Sr–Nd isotopic compositions of harzburgites are close to EM1-type mantle, and of the lherzolites are similar to bulk silicate earth. The latter could be the result of recent modification of old harzburgites by asthenospheric melt, which is strengthened by fertile compositions of minerals in the lherzolites. Therefore, the isotopic and chemical heterogeneities of the Fanshi peridotite xenoliths reflect the refertilization of ancient refractory lithospheric mantle by massive addition of asthenospheric melts. This may be an important mechanism for the lithospheric evolution beneath the Central NCC.  相似文献   

19.
本文通过对我国华北东南部中生代幔源岩浆活动的时空分布规律及其地球化学特征的系统总结来进一步厘定该地区中生代岩石圈地幔的性质和组成,并通过与华北内部如鲁中地区中生代岩石圈地幔的对比研究探讨华北东部岩石圈的时空演化规律、富集过程及其形成机理。幔源岩石的 Sr-Nd-Ph 同位素特征表明华北东部中生代岩石圈地幔存在明显的时空不均匀性,其中心部位如鲁中地区以弱富集地幔为主体;而东南部如鲁西南和胶东地区则为类似 EM2型地幔(~(87)Sr/~(86)Sr_i 可高达0.7114)。华北东南部中生代岩石圈地幔随时间的演化特征也很明显。这些幔源岩石的地球化学特征和玄武岩中地幔岩捕虏体(橄榄岩和辉石岩)和捕虏晶(橄榄石和辉石)的组成和结构特征皆证明华北东南部中生代岩石圈地幔曾受到过富硅熔体的强烈改造。橄榄岩-熔体的相互反应是该区岩石圈改造和组成转变的重要方式,从而造成古生代高镁橄榄岩转变为晚中生代低镁橄榄岩和辉石岩。进入岩石圈地幔的熔体具下/中地壳物质重熔的特征,从而导致该区晚中生代岩石圈地幔的快速富集。有关华北东部中生代岩石圈减薄和改造的时限、过程和机制等问题也进行较详细的讨论。  相似文献   

20.
The Cenozoic Haoti kamafugite field (23 Ma) is situated at the western Qinling Orogen, Gansu Province in China, which is a conjunction region of the North China Craton, the Yangtze Craton and the Tibetan Plateau. Fresh peridotitic xenoliths entrained in these volcanic rocks provide an opportunity to study the nature and processes of the lithospheric mantle beneath the western Qinling. These xenoliths can be divided into two groups based on the petrological features and mineral compositions, type 1 and type 2. Type 1 xenoliths with strongly deformed texture have higher Fo (90–92.5) contents in olivines, Mg# (91–94) and Cr# (15–35) of clinopyroxenes, and Cr# (36–67) of spinels than the weakly deformed type 2 xenoliths, which have the corresponding values of 89–90, 89–91.5, 10–15 and 5–15 in minerals, respectively. CaO contents in fine-grained olivines are slightly higher than 0.10 wt% compared with coarse-grained ones (less than 0.10 wt%). Fine-grained clinopyroxenes have low Al2O3 + CaO contents (generally <23 wt%) relative to coarse-grained ones (>23 wt%). Fo contents in fine-grained olivines mainly in the melt pocket of the type 1 xenoliths are higher than those in coarse-grained ones, which is somewhat contrary to the type 2 xenoliths without melt pocket. Clinopyroxenes of the type 2 display higher Na2O contents (1.7–1.9 wt%) than those of the type 1 (<1.4 wt%). P–T estimations reveal that the type 1 xenoliths give temperature in range of 1106–1187 °C and pressure of 21–26 kbar and that relatively low temperature (907 and 1022 °C) and pressure (19.0 and 18.5 kbar) for the type 2 xenoliths. The type 1 xenoliths are characterized by depletion due to high degree of partial melting (>10%), modal metasomatic and deformed characteristics, and may represent the old refractory lithospheric mantle. In contrast, the type 2 peridotites show fertile features with low degree of partial melting (<5%) and may represent the newly-accreted lithospheric mantle. The lithospheric mantle beneath the western Qinling underwent partial melting, recrystallization, deformation and metasomatism due to asthenospheric upwelling and the latest decompression responding to the Cenozoic extensive tectonic environment. These processes perhaps are closely related to the evolution of Tibetan Plateau caused by the India-Asian collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号