首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 55 毫秒
1.
甘东南地区宽频带地震台阵背景噪声特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于甘肃东南地区150个宽频带流动台站2010年的垂直分量连续波形记录,通过计算台站对之间背景噪声的互相关函数并叠加得到5—10s和10—20s两个周期的瑞雷面波信号,并通过信噪比和归一化背景能量流两种方法研究了该地区背景噪声源的时空演化特征.研究结果表明,甘东南地区5—10s和10—20s周期的背景噪声源具有明显的季节变化特征和各自的优势方位.5—10s周期的背景噪声在夏季的能量优势方位为170°—240°,噪声源主要位于印度洋,而冬季为100°—150°,主要位于北太平洋;10—20s周期的背景噪声源则比较复杂,其优势方位受多个大洋的交替影响,夏季噪声源能量优势方位为170°—210°,噪声源主要位于印度洋,冬季为90°—150°和310°—355°,噪声源分别位于北太平洋和北大西洋.由于这两个周期的背景噪声源在甘东南地区存在明显的季节变化,因此在利用背景噪声方法研究该地区介质速度结构时需充分考虑噪声源的非均匀性所产生的影响.   相似文献   

2.

短周期密集台阵的高频背景噪声互相关函数(NCF)是探查地球浅层精细结构的重要数据.然而高频背景噪声成分复杂且容易分布不均,分析其对NCF信号提取的影响,有助于获取可靠成像结果.本文基于布设于川滇地区盐源盆地的209个短周期台站组成的盐源台阵,利用密集台阵的噪声水平评估以及基于NCF的相干噪声分析两种方法,分析了其记录到的噪声波场特征及其对NCF的影响.结果表明,盐源台阵的整体噪声水平呈现北低南高的不均匀分布,高频噪声水平的强弱受控于当地的人类活动,亦受到浅部松散沉积层的影响.台阵垂直分量NCF中主要信号为基阶Rayleigh波,且产生该信号的相干噪声源的优势方位在不同频带具有较大区别:0.3~0.5 Hz的噪声源强度较强且随时间变化较为稳定,主要能量来自台阵的南侧;0.5~1 Hz的相干噪声源强度较低,有两个优势方向,其中较强的一个来自于台阵南侧,可能与0.3~0.5 Hz的噪声同源,较弱的一个来自于台阵北偏东方向;1~1.5 Hz的背景噪声有四个较弱的优势方向,在台阵的不同区域有不同的优势方向,可能受到不同的局部噪声源的控制.垂向NCF中Rayleigh波的信噪比主要受控于波场的复杂程度,台阵南部受人文活动及沉积层影响,噪声水平较高,且由于盆山边缘复杂的反射、散射作用,其NCF波形复杂,信噪比偏低.受高频噪声源分布不均与及复杂地质结构的共同影响,盐源台阵的高频NCF中的信号复杂,后续对面波频散特征的提取应充分考虑噪声源对NCF的影响以获取可靠结果.

  相似文献   

3.
云南地区地脉动噪声特征分析研究   总被引:2,自引:0,他引:2  
王伟涛  倪四道  王宝善 《地震》2011,31(4):58-67
对地震台站记录到的长时间背景噪声进行互相关可以得到台站间的格林函数, 进而可以对地下介质波速结构和波速变化进行研究。 对背景噪声来源方向和时空演化规律的分析, 是提高结果可靠性的重要基础。 本文利用分布在云南境内的43个宽频带固定台站2008—2010年的垂直分量记录, 计算了两两台站之间的互相关函数, 并用平均能量流的方法研究了云南地区5~10 s以及10~20 s两个频段内地脉动噪声能量的空间分布和时间演化。 研究结果表明, 云南地区5~10 s的地脉动噪声能量优势方向存在明显的季节性变化, 夏季优势能量方位角为180°~210°, 冬季则为70°~100°。 而10~20 s的地脉动噪声优势方向方位角较为稳定, 为180°~210°。 在这两个频段内噪声能量的强度都表现出了较强的季节性变化。 同时发现在5~10 s频段瑞利面波之前存在视速度接近30 km/s的前驱信号, 并对其可能来源进行了分析。  相似文献   

4.
基于中国地震科学探测台阵项目一期在南北地震带南段架设的300多个地震台站,利用2011年10月至2012年9月的连续观测记录,采用基于背景噪声互相关函数的面波层析成像技术,研究了青藏高原东南缘的云南地区面波群速度和方位各向异性分布.结果显示,地壳的面波快波方向呈现近南北向,整体表现出围绕东喜马拉雅构造结顺时针旋转的趋势,和地表GPS速度场以及S波分裂的快波方位较为一致.小江断裂东西两侧的快波方位有一定差异.对反映深度大概在下地壳和上地幔顶部的长周期面波,快波方向从近南北向逐渐向北西向过渡,在菱形块体附近,26°N以南,快波方向和红河断裂的走向趋于一致;其他区域相比上地壳的快波方向也有较大变化,这种结果较为支持青藏高原东南缘的云南地区壳幔变形的解耦.在滇西南,澜沧江向东弧形展布区域,中下地壳快波方位呈现局部的圆周旋转趋势,结合该区地震分布规律和应力主轴方向,推测这种现象和块体挤压及旋转具有一定相关性.  相似文献   

5.
张演  郑定昌  林国良  吕帅 《地震研究》2020,(4):689-700+768
背景噪声特性及噪声源的分布逐渐成为深化背景噪声互相关研究的关键问题。基于2015—2016年云南地区48个固定数字地震台的连续三分量记录,使用互相关计算提取台站对经验格林函数,基于经验格林函数正负支信噪比特性,结合海浪波高数据,得到云南地区5~10 s,10~20 s,20~40 s台站对信噪比的方位分布和时间变化特征。结果表明:云南地区三分量的噪声源优势方位在不同周期内均有差别,5~10 s噪声源优势方位变化较稳定,当海洋活动相对剧烈时,ZZ,RR分量比TT分量易受到影响;10~20 s噪声源优势方位变化与海洋活动的季节性变化规律较一致,1—6月ZZ,RR分量优势方位角指向E向和WS向,TT分量则以E向为主,7—12月ZZ,RR分量优势方位角明显指向WS向,TT分量在7—9月指向WS向,在10—12月则指向E向和WS向;20~40 s内的噪声强度较小且随时间变化稳定。因此,云南地区噪声能量源主要与北太平洋和孟加拉湾—安达曼海—北印度洋一带的活动有关。  相似文献   

6.
华北科学探测台阵背景噪声特征分析   总被引:10,自引:7,他引:10       下载免费PDF全文
利用华北科学探测台阵180多个宽频带台站2007年的连续记录,得到了台站之间噪声互相关函数.通过对三个分量记录的相关运算,获得了Rayleigh波和Love波的经验格林函数,分析了其信噪比随周期的变化和高信噪比台站对的方位分布.利用经验格林函数的非对称性和聚束方法,研究了华北科学探测台阵地震噪声的方位分布,及其季节变化特征.尽管噪声源的分布随季节有轻微变化,但全年的分析结果表明,10~32 s周期内华北台阵的地震噪声源在各个方向上的分布近于均匀,这为利用噪声成像提供了理论前提.  相似文献   

7.
青藏高原东北缘背景噪声特征分析   总被引:2,自引:0,他引:2  
采用2009年青藏高原东北缘55个数字化宽频带地震台站的垂直分量波形数据,计算了台站间噪声互相关函数,得到了Rayleigh经验格林函数。利用信噪比和归一化平均能量流的方法分析了青藏高原东北缘背景噪声源的方位分布和季节性变化特征。结果表明,5~10 s周期噪声源方位分布上较为稳定,不随季节变化,噪声源能量集中在105°~165°方向上,噪声源主要来自于太平洋。10~20 s周期噪声源季节性变化特征明显,夏季的噪声能量主要集中在165°~210°方向上,噪声源来自于印度洋海洋活动;冬季主要集中在300°~350°和165°~210°方向上,噪声能量主要来源于太平洋和北大西洋。  相似文献   

8.
选取云南省区域台网46个地震台从2007年11月—2009年10月的宽频带噪声数据, 通过互相关方法获得经验格林函数, 采用自适应时频分析方法获取相速度频散曲线, 并且反演得到8—40 s的相速度分布图. 研究结果表明: 云南地区短周期相速度低速异常与地表断裂带分布和沉积层厚度密切相关; 在短周期相速度分布图上, 红河断裂南北段呈现差异, 表明红河断裂南北段周边介质存在物性差异, 这可能是造成地震活动南北差异的主要原因; 长周期相速度分布图显示, 红河断裂和小江断裂带存在低速异常, 可能是切穿地壳的超壳断裂, 该低速异常可能与深部热作用有关; 红河断裂和小江断裂带交汇地区存在高速异常, 该高速异常体对川滇块体深部介质向南运动可能起到了阻挡的作用. 本文结果为下一步反演云南地区的三维剪切波速度结构奠定了基础.  相似文献   

9.
利用鄂西地区长时间段宽频地震台站的三分量背景噪声记录,采用波形互相关方法得到台站对间的互相关函数,并通过聚束分析获得瑞雷波和勒夫波的慢度谱,研究鄂西地区背景噪声源的时空分布特征。结果表明,5~10 s周期范围,背景噪声来源于南太平洋且没有季节变化;10~20 s周期范围,慢度谱上显示明显的能量环,表明噪声源来源于多个方向,且表现出强烈和急剧的季节变化;20~40 s周期范围,慢度谱上也存在明显的能量环,其产生机制可能与此周期下提出的次重力波机制相似。在不同的周期范围内,噪声源分布方位有所不同,但在周期10~40 s范围噪声源在各方向均有分布。因此,利用长时间段连续噪声数据计算的互相关函数在周期10~40 s范围内满足背景噪声面波层析成像的理论前提。  相似文献   

10.
基于祁连山地区78个地震台站的垂直分量连续波形记录,计算台站对之间背景噪声的互相关函数,并叠加得到5—10 s和10—20 s两个周期的瑞利面波信号。利用归一化振幅方法,分析不同周期范围的噪声源能量在不同方位随季节变化的规律。研究结果显示:祁连山地区5—10 s周期背景噪声的能量优势来源,夏季集中在110°—170°方位,冬季集中在300°—350°方位,但在110°—150°方位也有相对微弱的能量分布,表明第二微震带的噪声能量来源在夏季主要来源于太平洋的海洋活动,冬季主要来源于大西洋的海洋活动;10—20 s周期背景噪声的能量优势来源在夏季集中在70°—150°和170°—230°方位,在冬季则集中在290°—350°和70°—130°方位,表明第一微震带的噪声能量在夏季主要来源于印度洋的海洋区域,冬季主要来源于北大西洋和太平洋。由于2个周期的背景噪声源在祁连山地区存在明显的季节差异,因此在利用背景噪声方法研究该地区介质速度结构时,需充分考虑噪声源非均匀性产生的影响。  相似文献   

11.
2001年云南中强地震序列震源参数   总被引:5,自引:5,他引:5  
2001年云南省共有7个地区发生了Ms≥5.0级的中强地震,其中5≤Ms≤6级地震达9次之多。本利用昆明区域数字化地震台网记录的云南7个地区中强地震序列的765个地震波形资料,应用Brune模式给出了7个地震序列震源参数结果,并讨论了各序列震源参数和地方震级的关系,拐角频率与应力降的时空强分布,从构造和应力降的角度讨论了各序列的演变趋势。  相似文献   

12.
IntroductionYunnanProvinceislocatedinthesouthofNorth-SouthseismiczoneinChina.ItisoneofthehighseismicactiveregionsinChinesemainland.Morethanonehundredstrongearthquakeswithmagnitude6ormoreoccurredinthisregioninhistory.AsanimportantsoutheasternmarginofTibetanPlateau,YunnanregionisahotspotinstudyonthedynamicsofTibetanPlateau.Theactionsofcompressivestressinnorth-southorientationandgravitationalpotentialcausedlateralextrusionofmaterialintheplateauwiththeupliftingofTibetanPlateau.Severalblocksa…  相似文献   

13.
利用中国中东部地震台网中430个宽频带台站2008和2009两年的垂直分量记录,我们计算了台站对之间的噪声互相关函数(Noise Cross-correlation Function,NCF).在相当多的NCF中,沿大圆路径传播的瑞利面波信号之前存在一个较强的前驱信号,该信号持续时间约50 s,频率范围为0.07~0.12 Hz.此信号在同一台站对的NCF中稳定存在、到时相同,而在不同台站对的NCF中到时不一致,这表明该信号可能源于一个固定的较小区域内持续存在的噪声源.基于格点搜索方法的定位结果显示该噪声源位于日本九州岛附近,其激发出的信号传播速度约2.7 km/s.假定该信号由一点产生,我们计算了合成地震图,合成地震图与观测到的前驱信号基本一致,验证了定位结果的可靠性.此噪声源会对特定路径上的面波信号产生干扰,在相关研究中需要采取一定措施避免.该噪声源的物理机制有待于进一步的研究.  相似文献   

14.
云南地区地下水动态的地震源兆与场兆特征分析   总被引:1,自引:0,他引:1  
王世芹  刘丽芳  付虹 《地震研究》2004,27(2):126-132
在地震预报中,对发震地点的预测一般都是“以场求源”。如何区别源兆与场兆的特征,是地震预报特别是短临预报必须回答的问题。根据云南1979—2000年间的20余年中地下水动态观测的事实,作者在“七五”、“八五”攻关项目的基础上,对地震源兆与场兆的地下水动态特征进行了深入分析,认为源兆特征为短临异常多、空间分布密集、以高频异常为主;场兆特征为中短期异常多、空间分布稀疏、以破年变异常为主。该分析对进一步开展地震预测预报实践有一定的借鉴意义。  相似文献   

15.
Noise correlation function (NCF) was calculated using the data of the Beijing Capital-Area Telemetered Digital Seismograph Network from June 12 to September 12, 2005. Signal-to-noise ratio (SNR) is used to characterize the quality of NCF at each station pair. The SNR (in dB) is shown to be dependent on the separation distance <i<R</i< of the station pair via SNR = <i<A ?B</i<log<i<R</i<. 'Normalized average SNR' for all the station pairs can then be calculated, as represented by the value of SNR taking <i<R</i< = 250 km in the empirical SNR-<i<R</i< relation, to measure the overall quality of the NCF result. The 'normalized average SNR' of the NCF shows temporal variation and is apparently dependent on the root-mean-square (RMS) velocity of the microseism. The result obtained by this experiment provides clues to the explanation of the properties of NCF, such as the dominant mechanism underlying (diffuse wave fields or uncorrelated sources), and the dependence of SNR on the time length of recordings.  相似文献   

16.
Noise correlation function(NCF) was calculated using the data of the Beijing Capital-Area Telemetered Digital Seismograph Network from June 12 to September 12,2005.Signal-to-noise ratio(SNR) is used to characterize the quality of NCF at each station pair.The SNR(in dB) is shown to be dependent on the separation distance R of the station pair via SNR = A -BlogR.'Normalized average SNR' for all the station pairs can then be calculated,as represented by the value of SNR taking R = 250 km in the empirical SNR-R...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号