首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
康路  胡平  杨军  王华  杨帆  杜金晶  杨占林 《材料导报》2015,29(21):132-136, 144
近年来,由于磁性纳米粒子在实际应用中发挥越来越重要的作用,有关磁性纳米粒子的应用受到科学界广泛关注,特别是生物医学领域。由于磁性纳米Fe_3O_4粒子制作简单且晶体对细胞无毒,在生物医药领域大量应用,磁性纳米Fe_3O_4粒子主要通过表面包覆成为免疫磁性微球进行使用。简述了磁性纳米Fe_3O_4粒子的制备方法,重点综述了近些年磁性纳米Fe_3O_4粒子在生物医学上的应用,包括磁共振成像技术、磁分离技术、靶向药物载体技术、肿瘤热疗技术、造影剂技术,并且阐述了磁性纳米Fe_3O_4粒子的发展前景。  相似文献   

2.
首先制备了形状记忆性良好、在热场和磁场中都可响应的SMP/Fe3O4纳米复合材料,将样品在形变固定后,储存不同时间,分别在热场和磁场中考察储存时间对SMP/Fe3O4回复性能的影响。结果显示,储存时间10min及储存时间为12h的样品的形状回复率均在95%以上,存储时间对于热场和磁场中形变回复性能的影响具有类似的规律,即:形变固定后储存时间延长,其起始回复温度升高,回复诱导期增长,回复的温度区间变宽。XRD、DSC、DMA测试结果表明,随储存时间的延长,样品的结晶度增加,样品熔点和熔融温度区间发生改变,从而引起相应的SMP/Fe3O4回复性能的变化。  相似文献   

3.
刘家良  李娜 《材料导报》2018,32(Z1):121-123
报道了一种合成具有巯基官能团修饰的Au/Fe_3O_4磁性纳米粒子的新方法。采用共沉淀法制备Fe_3O_4磁性纳米颗粒,并在此基础上用聚(烯丙胺)溶液还原HAuCl4,制得Au/Fe_3O_4磁性核壳纳米颗粒,再用3-巯基-1-丙磺酸钠修饰Au/Fe_3O_4磁性纳米粒子,最后得到具有巯基官能团稳定的Au/Fe_3O_4磁性纳米粒子。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)、振动样品磁强计(VSM)分别对产物的微观结构及磁性特征进行表征。  相似文献   

4.
Nanocomposites composed of polypyrrole (PPy), graphite nanosheets (NanoGs), magnetite (Fe3O4) nanoparticles, have been successfully synthesised with a two-step process. First, we prepared NanoGs/Fe3O4 powder via wet chemical co-precipitation method. Next, pyrrole was polymerised in the suspension of NanoGs/Fe3O4 and then PPy/NanoGs/Fe3O4 nanocomposites were produced. The products were characterised by Fourier-transform infrared spectroscopy, Transmission electron microscopy, Thermogravimetric, conductivity and magnetisation analysis. The result showed that the conductivity of the PPy/NanoGs/Fe3O4 composites, compared with pure PPy, increased dramatically. And the saturation magnetisation of nanocomposites increased with the increase of the volume fraction of the Fe3O4 particles. In addition, according to the thermal gravimetric analysis, compared with PPy, nanocomposites exhibited enhanced thermal stability due to the introduction of NanoGs/Fe3O4. The PPy/NanoGs/Fe3O4 composites show potential applications in electric–magnetic shield materials.  相似文献   

5.
The assembly of superparamagnetic Fe3O4 nanoparticles on submicroscopic SiO2 spheres have been prepared by an in situ reaction using different molar ratios of Fe3+/Fe2+ (50–200%). It has been observed that morphology of the assembly and properties of these hybrid materials composed of SiO2 as core and Fe3O4 nanoparticles as shell depend on the molar ratio of Fe3+/Fe2+.  相似文献   

6.
Carbonization of magnetic polymer microspheres is one of the methods for the preparation of magnetic carbon materials. Fe3O4 magnetic particle characteristics considerably influence the magnetic content and size distribution of magnetic polymer microspheres. The characteristics of Fe3O4 nanoparticles modified by oleic acid (OA) and undecylenic acid (UA) were analyzed by X-ray diffraction, Fourier transform infrared, scanning electron microscopy, dynamic laser light scattering, thermogravimetry/differential thermogravimetry, vibrating sample magnetometer, and water contact angle. Fe3O4 nanoparticles modified by OA and UA are nearly spherical and exhibit superparamagnetism. Fe3O4 particle size and saturation magnetization are slightly influenced by the OA and UA composition. OA and UA both are chemically adsorbed onto Fe3O4 as bidentate chelates. OA shows easier adsorption onto Fe3O4 than UA. OA groups have an expanded arrangement on OA@Fe3O4, whereas UA groups have a condensed arrangement on UA@Fe3O4. Particle lipophilicity decreases and particle clustering increases with decreasing OA content and increasing UA content on OA-UA@Fe3O4 nanoparticles.  相似文献   

7.
First principles of FLAPW-GGA calculations have been performed with the purpose to understand the peculiarities of band structure and Fermi surface topology for recently discovered 37 K superconductor: Sr4V2Fe2As2O6—in comparison with isostructural phase Sr4Sc2Fe2As2O6. Our main finding is that the replacement of Sc with V leads to drastic transformation of electronic, magnetic and conductive properties of these materials: as against non-magnetic Sr4Sc2Fe2As2O6 which is formed from non-magnetic conducting [Fe2As2] and insulating [Sr4Sc2O6] blocks, Sr4V2Fe2As2O6 consists of non-magnetic conducting [Fe2As2] blocks and [Sr4V2O6] blocks which exhibit magnetic half-metallic properties.  相似文献   

8.
董丽  董桂霞  张茜 《材料导报》2016,30(10):47-50
采用固相法制备0.93MgTiO3-0.07CaTiO3-xFe_2O_3(摩尔分数x=0.01~0.025)微波介质陶瓷材料,研究添加Fe_2O_3后,体系的晶体结构、显微结构和微波介电性能之间的变化规律。利用XRD、SEM、网络分析仪对样品的相组成、微观结构、介电性能进行测试分析。研究表明:该复合陶瓷样品的致密度、介电常数和Q·f值随Fe_2O_3含量的增加先增大后减小。当x(Fe_2O_3)为0.015,在1290℃烧结4h时,获得最优的介电性能:εr=21.32,Q·f=37448GHz,τf=0.577×10-6/℃。  相似文献   

9.
Abstract

Preparation condition can affect the structure and the properties of nanofiber membrane. In order to explore suitable conditions to prepare the Fe3O4/PVDF nanofiber membrane with good hydrophobicity, the hydrophobicity of Fe3O4/PVDF nanofiber membranes obtained by electrospinning was investigated by changing preparation conditions like weight percentage of Fe3O4 nanoparticles, blending quality concentration of poly (vinylidene fluoride) (PVDF) and Fe3O4 nanoparticles, and positive voltage. And the variations of hydrophobicity of Fe3O4/PVDF nanofiber membranes modified by 1H, 1H, 2H, 2H-perfluorodecyl trimethoxysilane were studied. The results show that the hydrophobicity of Fe3O4/PVDF nanofiber membranes has changed under different preparation conditions. The contact angles of samples increased after a modification by 1H, 1H, 2H, 2H-perfluorodecyl trimethoxysilane, which indicates that the hydrophobicity of Fe3O4/PVDF nanofiber membranes has been enhanced.  相似文献   

10.
用化学共沉淀法制备了强磁性的Ni掺杂Fe3O4纳米磁粉。采用X射线衍射仪、电感耦合等离子发射光谱仪、傅立叶红外-拉曼光谱仪、透射电子显微镜、振动样品磁强计对掺杂Fe3O4纳米粒子进行了物相结构和磁性能表征。结果表明,掺杂Fe3O4磁粉的粒径在20nm左右,其比饱和磁化强度(σs)可达114emu/g,大大超过了一般Fe3O4纳米磁粉的比饱和磁化强度(σs),并进一步分析了掺杂Fe3O4纳米粒子的磁性能有较大提高的原因。  相似文献   

11.
Fe2O3 thin film was prepared using aqueous solution of FeCl3 by spray pyrolysis. The substrate temperature was 450°C. The lattice parametersa andc for different concentrations were calculated from X-ray diffraction study. Hexagonal structure of the Fe2O3 thin film was confirmed. Band gap values of Fe2O3 prepared from different concentrations were determined from optical transmission data.  相似文献   

12.
以氨水作为沉淀剂并控制溶液的pH值,采用Fe3+和Fe2+共沉淀法制得了磁性四氧化三铁纳米颗粒。合成的磁性纳米颗粒通过高分辨透射电镜、X射线衍射仪、傅里叶变换红外光谱仪进行了表征。四氧化三铁纳米颗粒的粒径约为10nm,其表面含有丰富的羟基。为了增强磁性四氧化三铁纳米颗粒和聚合物基质之间的相互作用,在纳米颗粒的表面接枝上乙烯基单体。傅里叶变换红外光谱仪和热重分析仪的测试结果显示,聚合物链共价结合在纳米颗粒表面。表面接枝聚合后,四氧化三铁纳米颗粒由极性转变为非极性。  相似文献   

13.
采用热法合成磁性Fe3O4纳米颗粒,通过精细调控实验条件能对其形状和大小进行有效控制。采用X射线衍射仪、透射电镜、振动样品磁强计等对Fe3O4纳米颗粒的成分、形貌及磁性等进行了表征测试。结果表明,Fe3O4纳米颗粒的饱和磁化强度为62.5emu/g。最后探讨了Fe3O4纳米颗粒的合成机理。  相似文献   

14.
With the aim to improve the performance of magnetorheological fluids (MRFs) for mechanical transmission system, a process to prepare silicone oil-based MRFs with the addition of nanometer Fe3O4 particles is presented and five MRFs samples with different mass fraction of nanometer Fe3O4 particles have been prepared. The experimental materials, the preparation process, and test methods are elaborated. Moreover, the microstructures of soft magnetic carbonyl iron particles, nanometer Fe3O4 particles, and carbonyl iron/nano-sized Fe3O4 composites have been characterized via scanning electron microscope (SEM). Finally, test experiments of sedimentation stability, zero field viscosity, and shear yield stress have been carried out. The experimental results show that adding a certain amount of nanometer Fe3O4 particles (4 and 6 wt%) into MRFs can improve the performance of MRFs.  相似文献   

15.
The presence of Fe(3)O(4)-CoO/Al(2)O(3) can improve degradation efficiency significantly during the ozonation of the herbicide 2-(2,4-dichlorophenoxy) propionic acid (2,4-DP). The main factors affecting degradation efficiency, such as pH, the catalyst concentration and addition of the scavenger, were investigated. The kinetics of the catalytic ozonation are also discussed. The results indicate that two factors, the oxidation after adsorption of 2,4-DP and the oxidation of hydroxyl radicals (OH), lead to a great enhancement in ozonation efficiency during the catalytic ozonation of 2,4-DP in the presence of Fe(3)O(4)-CoO/Al(2)O(3), in which the oxidation of the OH plays an important role. Under controlled conditions, the apparent reaction rate constants for the degradation of 2,4-DP were determined to be 2.567 × 10(-4)s(-1) for O(3) and 1.840 × 10(-3)s(-1) for O(3)/Fe(3)O(4)-CoO/Al(2)O(3). The results from the analysis of the reaction kinetics using the relative method showed that O(3)/Fe(3)O(4)-CoO/Al(2)O(3) possessed a larger R(ct) (R(ct) is defined as the ratio of the ·OH exposure to the O(3) exposure, R(ct) = ∫C(t)(OH) dt/C(t)O(3)dt) than O(3), indicating that O(3)/Fe(3)O(4)-CoO/Al(2)O(3) produced more hydroxyl radicals.  相似文献   

16.
In this study, we develop an experimental procedure to synthesize hematite nanoparticles by hydrothermal decomposition of Fe-EDTA complex in the presence of hydrogen peroxide, starting from ferric ammonium sulfate and Na 4 EDTA as main precursors. The product was investigated by X-ray diffraction, scaning electron microscopy, dispersive X-ray spectroscopy, magnetic measurements, and UV-vis optical absorption measurements. The size of nanoparticles was determined to be 42 nm evaluated by XRD patterns using the Scherrer equation. This method allowed the formation of pure hematite nanoparticles with good and stable crystallographic characteristics. This procedure can be an effective method for synthesizing hematite nanoparticles exhibiting good crystallinity, stoichiometry, magnetic, and optical band gap properties. A possible mechanism for the formation of hematite nanocrystals was suggested.  相似文献   

17.
Development of highly active photocatalysts for treatment of dye-laden wastewaters is vital. The photocatalytic removal of azo dye Reactive Black 5 was investigated by Fe3O4-WO3-3-aminopropyltriethoxysilane (APTES) nanoparticles in the presence of visible light. The Fe3O4-WO3-APTES nanoparticles were synthesized via a facile coprecipitation method. The photocatalyst was characterized by XRD, FT-IR, SEM, EDX, VSM, UV–Vis, and pHPZC techniques. The effects of some operational parameters such as solution pH, nanophotocatalyst dosage, initial RB5 concentration, H2O2 concentration, different purging gases, and type of organic compounds on the removal efficiency were studied by the Fe3O4-WO3-APTES nanoparticles as a photocatalyst. Maximum phtocatalytic activity was obtained at pH 3. The photocatalytic removal of RB5 increased with increasing H2O2 concentration up to 5?mM. The removal efficiency declined in the presence of different purging gases and all types of organic compounds. First-order rate constant (kobs) decreased from 0.027 to 0.0022?min?1 and electrical energy per order (EEo) increased from 21.33 to 261.82 (kWh/m3) with increasing RB5 concentration from 10 to 100?mg/L, respectively. The efficiency of LED/Fe3O4-WO3-APTES process for RB5 removal was approximately 89.9%, which was more effective than the LED/Fe3O4-WO3 process (60.72%). Also, photocatalytic activity decreased after five successive cycles.  相似文献   

18.
Chestnut shell (CS) acts as a multi-functional material in the one-step preparation of Fe3O4@C nanocomposite via hydrothermal method by using Fe(NO3)3 as Fe source without adding any other additives. The characterized results show that under required hydrothermal conditions, a proper amount of CS can reduce a certain amount of adsorbed/enriched Fe3+ to Fe2+ to ensure the 2:1 molar ration of Fe3+ to Fe2+ and the in-situ formation of goal phase Fe3O4 on the surface of the CS. Meanwhile, CS is carbonized to C material similar to graphene oxide. In the preparation process of the composite of Fe3O4@C, CS plays multiple roles, such as promoter, reductive agent, C-source, and template, to endow a certain morphology of the nanocomposite Fe3O4@C. The composite material shows good magnetic separability and adsorption property for methylene blue (MB) solution. Furthermore, the adsorptive kinetic behavior of the Fe3O4@C is investigated. The method is simple, fast, low cost and green and really realizes the full use of wasteful resource CS.  相似文献   

19.
Fe3O4磁性纳米粒子表面修饰研究进展   总被引:1,自引:0,他引:1  
表面修饰Fe3O4磁性纳米粒子因具有优异的磁学特性、良好的生物相容性和丰富的化学反应可选择性,在生物医药领域如磁共振成像、组织修复、免疫测定、热疗、药物传递和细胞分离中显示了巨大的应用潜力.Fe3O4磁性纳米粒子的表面修饰主要包括以下3类:①有机小分子修饰,主要是偶联剂和表面活性剂修饰;②有机高分子修饰,包括天然生物大分子、合成高分子以及两者复合修饰;③无机纳米材料修饰,主要是SiO2、Au和Ag修饰.并就这三大方面的研究进展做了综合概述.  相似文献   

20.
采用改进的氧化沉淀法在羧甲基纤维素(CMC)溶液中制备了以磁性纳米Fe3O4为核心,外包CMC的复合磁性纳米粒子。用透射电镜、X射线衍射、红外光谱、Zeta电位和震动样品磁强计对复合粒子进行了表面形貌、结构和磁学的表征。实验结果表明,CMC-Fe3O4复合纳米粒子为反尖晶石型,平均粒径约为40 nm;CMC在Fe3O4粒子表面是化学吸附;在相同pH值下,CMC-Fe3O4的表面Zeta电位低于纯相Fe3O4;CMC-Fe3O4的饱和磁化强度为36.74 emu.g-1;CMC-Fe3O4复合粒子在土壤介质中的过滤系数约为0.03 cm-1;在10 cm土柱渗透实验中,72%的CMC-Fe3O4复合粒子悬浊液穿过了土壤介质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号