首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
CDMA射频前端低噪声放大器电路设计研究   总被引:12,自引:0,他引:12  
向宏平  杜惠平 《微电子学》2004,34(4):432-434,438
文章归纳了射频前端低噪声放大器电路设计中的若干问题,逐一探讨了解决问题的方法。基于有关处理,结合CDMA2000基站中射频低噪声放大器电路的设计要求,完成了实际电路的设计。通过仿真,进一步分析了相关问题处理方法的有效性。  相似文献   

2.
穆兰 《电子设计工程》2013,(21):175-177
UHF RFID读写器在发射大功率射频信号的同时,接收标签返回的微弱信号.UHF RFID通讯特点对频率综合器的频率精度和相位噪声有很高的要求.LMX2531是一款能够满足RFID通讯需要的产品,它采用频率校准电流来提高频率精度,采用自带环路滤波器和控制充电泵电流等措施减少相位噪声.本文描述了基于LMX2531的RFID读写器射频电路,分析了它的功能,详细介绍了如何编程LMX2531工作参数.  相似文献   

3.
RFID是通过射频信号,利用空间耦合实现无接触信息传递、识别的技术,已经被广泛应用在各个行业之中。在这一背景下,文章以超高频RFID读写器射频电路仿真、PCB设计为切入点,深入探究视频电路设计的方式。目的是强化RFID的性能,提高信号传递、识别的准确性,以期为相关人员提供参考。  相似文献   

4.
高频RFID读写器射频模拟前端的实现   总被引:5,自引:0,他引:5  
刘冬生  邹雪城  杨秋平 《半导体技术》2006,31(9):669-672,679
射频识别(RFID)系统主要由RFID读写器和RFID电子标签两部分组成.给出了高频(13.56MHz)RFID系统中读写器射频模拟前端的电路设计,符合ISO/IEC14443 type A/type B,ISO/IEC15693和ISO/IEC18000-3中任一个标准的读写器芯片设计均可采用,设计工艺采用了中芯国际0.35μm 2P3M混合CMOS技术,并给出了Cadence环境下的仿真结果.  相似文献   

5.
李营刚 《电子世界》2012,(12):52-53
本文根据协议的相关要求,设计了无源UHF RFID标签芯片模拟前端电路,并重点对标签芯片模拟前端的关键技术进行了优化,实现了标签芯片模拟前端电路。最终,电路的仿真结果表明标签芯片的模拟前端电压较为稳定,且功耗较小,稳定的时钟频率能够帮助系统进行正确的输入信号解调,实现了协议要求的电路设计。  相似文献   

6.
目前设计的前端放大电路仅从低噪声放大电路着手,导致安装在短波发射机上的电路运行效率降低,针对这一问题提出短波发射机射频前端放大电路设计与实现.分析短波发射机射频信号传输过程,从前端低噪声放大电路和前端功率放大电路两个方面设计射频前端放大电路,同时计算前端低噪声放大电路的增益、稳定及抗噪声性能指标、前端功率放大电路功率增...  相似文献   

7.
提出了900 MHz频段下射频识别(RFID)读写器芯片射频前端接收器混频器模块,给出了读写器芯片的前端混频电路结构。采用单平衡无源混频器的特殊结构,降低了载波泄漏的干扰,后级接跨阻放大器,抑制了后级电路的噪声。通过电路内部复数反馈可以控制接收机等效输入阻抗实部与虚部的变化,进行阻抗匹配,省去了片外匹配网络。在SMIC 0.13μm CMOS混和信号工艺下进行流片。测试结果表明,核心模块的电源电压为3 V,电流为7.3 mA,混频器的转换增益为21.8 dB,输入1 dB压缩点为-5.11 dBm,IP3为4.6 dBm,芯片核心面积为0.83 mm×0.56 mm。  相似文献   

8.
提出了一个适用于EPC Gen2协议的小面积低功耗RFID射频前端电路的设计方案.射频前端电路包括整流器、ASK解调器、ASK和BPSK调制器和传感器模块,射频的工作频率为860~960 MHz.基于具有不挥发存储器和肖特基二极管选项的0.35μm CMOS工艺,设计了RFID射频前端电路.采用开关电容电路技术实现了小面积低功耗RFID射频前端电路.  相似文献   

9.
采用0.18μm CMOS工艺设计并制作了一款应用于便携式UHFRFID阅读器的射频发射前端电路。所设计的有源I/Q上混频器通过开关控制Q支路的信号输入,实现了EPC Global Class-1Gen-2协议中所要求3种调制方式;驱动放大器通过实现增益7级数字可调有效地预放大混频器的输出信号。在1.8V的电源电压下,测得阅读器前端电路的主要性能参数如下:上混频器的输入端P1dB,达到-14.9dBVrms,转换增益和噪声系数分别为3.18dB和13.20dB;驱动放大器的输出端P1dB在50Ω阻抗上达到3.5dBm,转换增益可调范围和噪声系数变化范围,分别为7.90~16.30dB和3.10~5.00dB。  相似文献   

10.
基于Impinj Indy R2000芯片设计了一款新型超高频射频识别(UHF RFID)读写器,并采用AT91SAM7S256微控制器芯片为数字处理模块,系统工作频率为860~960 MHz,扩展的外部功率放大模块使射频输出功率达30dBm。提出了一种功分隔离电路,其结构简单,所用元器件少,集成方便,实现收发信号的隔离,达到了较高的隔离度。说明了读写器主要硬件模块设计,给出了主要性能指标测试,最后验证了系统设计的可行性。  相似文献   

11.
一种新型超高频射频识别射频前端电路设计   总被引:1,自引:0,他引:1  
设计了一种低功耗高线性度的新型超高频射频识别射频前端电路.在LNA的设计中,通过在输入端采用二阶交调电流注入结构以提高线性度,在输出端采用开关电容结构以实现工作频率可调;在混频器的设计中,在输入端采用同LNA相同的方法以提高线性度,而在输出端采用动态电流注入结构以降低噪声.该电路采用0.18μmCMOS工艺,供电电压为1.2V,仿真结果如下:输入阻抗S11为-23.98dB,IIP3为5.05dBm,整个射频前端电路的增益为10dB.  相似文献   

12.
射频识别(RFID)系统,由于其智能、快速、耐久、记忆容量大等优点,拥有广阔的应用发展前景。主要研究了UHF频段RFID阅读器接收电路的设计,分析了其零中频接收电路结构,解决了由RFID系统自身特殊性所带来的零点问题和直流漂移,最终通过仿真验证了该电路结构的可行性。  相似文献   

13.
黄俊  李旭梅 《压电与声光》2012,34(6):940-943
首先说明射频识别(RFID)系统结构和关键技术,然后针对无源被动标签的通信原理,给出了915 MHz特高频(UHF)RFID读卡器射频前端的硬件设计方法,包括发送模块、接收模块及锁相环的设计,最后列出射频前端硬件系统的测试方法.结果表明,该设计满足915 MHz频段的读卡器功能需求,且具有性能稳定,效果良好和配置维护灵活的特点.  相似文献   

14.
超高频射频识别系统具有存储容量大、读写速度快、识别距离远和可同时读写多个电子标签等特点,已经在众多领域得到了广泛的应用。为了满足市场需求,文章对超高频读写器的内部结构进行了研究,并提出了一种基于ARM的超高频射频识别系统读写器的设计方案。文中从硬件和软件两个方面对读写器的设计进行了阐述,给出了读写器的设计结构、工作流程...  相似文献   

15.
提出了一种符合ISO/IEC 18000-6B标准的高性能无源UHF RFID电子标签模拟前端,在915MHz ISM频带下工作时其电流小于8μA.该模拟前端除天线外无外接元器件,通过肖特基二极管整流器从射频电磁场接收能量.该RFID模拟前端包括本地振荡器、时钟产生电路、复位电路、匹配网络和反向散射电路、整流器、稳压器以及AM解调器等.该芯片采用支持肖特基二极管和EEPROM的Chartered 0.35μm 2P4M CMOS工艺进行流片,读取距离大于3m,芯片面积为300μm×720μm.  相似文献   

16.
提出了一种符合ISO/IEC 18000-6B标准的高性能无源UHF RFID电子标签模拟前端,在915MHz ISM频带下工作时其电流小于8μA.该模拟前端除天线外无外接元器件,通过肖特基二极管整流器从射频电磁场接收能量.该RFID模拟前端包括本地振荡器、时钟产生电路、复位电路、匹配网络和反向散射电路、整流器、稳压器以及AM解调器等.该芯片采用支持肖特基二极管和EEPROM的Chartered 0.35μm 2P4M CMOS工艺进行流片,读取距离大于3m,芯片面积为300μm×720μm.  相似文献   

17.
基于Impinj Indy R2000芯片设计了一款新型超高频射频识别(UHF RFID)读写器,并采用AT91SAM7S256微控制器芯片为数字处理模块,系统工作频率为860~960 MHz,扩展的外部功率放大模块使射频输出功率达30 dBm。提出了一种功分隔离电路,其结构简单,所用元器件少,集成方便,实现收发信号的隔离,达到了较高的隔离度。说明了读写器主要硬件模块设计,给出了主要性能指标测试,最后验证了系统设计的可行性。  相似文献   

18.
RFID读写器发射模块电路设计与实现   总被引:3,自引:0,他引:3       下载免费PDF全文
根据EPC Class 1 Generation 2协议和FCC标准,要求发射模块的发射频率精度为±10×10-6(10 ppm),发射功率在20~30 dBm之间.我们用Genesis等软件对发射模块的各个部分电路进行设计并绘制PCB板,利用频谱分析仪等设备对射频板的发射模块进行测试,发射功率能达到24 dBm左右;单音测试时发射频率偏差约22 Hz;调制信号测试时频率偏差约3.5 kHz,其他指标也符合要求.结果表明发射模块性能良好,能很好地满足设计指标要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号