首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nanoparticles covered with surfactants are often used to study particle motion patterns and self‐assembly processes in solutions. Surfactants have influence on the interparticle interactions and therefore on the particle motion tracks and final patterns. In this study, CoPt nanoparticles are synthesized in aqueous solution without any surfactant. In situ transmission electron microscopy observation is performed to monitor the self‐assemble process. Two types of magnetic nanoparticle superlattice arrays are formed: hexagonal equal distance superlattice arrays when particle size is 3 nm, and tight unequal distance superlattice arrays when particle size is 4.5 nm. It is interesting to observe that two small arrays merge into a large one through rotational and translational movements. A Monte Carlo simulation is carried out which successfully restores the whole process. It is identified that the underlying forces are van der Waals and magnetic dipolar interactions. The latter is responsible for orientation of each particle during the whole process. This investigation leads to a better understanding of the formation mechanism of magnetic nanoparticle superlattice arrays.  相似文献   

3.
The capability to study the dynamic formation of plasmonic molecular junction is of fundamental importance, and it will provide new insights into molecular electronics/plasmonics, single‐entity electrochemistry, and nanooptoelectronics. Here, a facile method to form plasmonic molecular junctions is reported by utilizing single gold nanoparticle (NP) collision events at a highly curved gold nanoelectrode modified with a self‐assembled monolayer. By using time‐resolved electrochemical current measurement and surface‐enhanced Raman scattering spectroscopy, the current changes and the evolution of interfacial chemical bonding are successfully observed in the newly formed molecular tunnel junctions during and after the gold NP “hit‐n‐stay” and “hit‐n‐run” collision events. The results lead to an in‐depth understanding of the single NP motion and the associated molecular level changes during the formation of the plasmonic molecular junctions in a single NP collision event. This method also provides a new platform to study molecular changes at the single molecule level during electron transport in a dynamic molecular tunnel junction.  相似文献   

4.
5.
6.
Self‐assembled DNA nanostructures have emerged as a type of nano‐biomaterials with precise structures, versatile functions and numerous applications. One particularly promising application of these DNA nanostructures is to develop universal nanocarriers for smart and targeted drug delivery. DNA is the genetic material in nature, and inherently biocompatible. Nevertheless, cell membranes are barely permeable to naked DNA molecules, either single‐ or double‐ stranded; transport across the cell membrane is only possible with the assistance of transfection agents. Interestingly, recent studies revealed that many DNA nanostructures could readily go into cells with high cell uptake efficiency. In this Progress Report, we will review recent advances on using various DNA nanostructures, e.g., DNA nanotubes, DNA tetrahedra, and DNA origami nanorobot, as drug delivery nanocarriers, and demonstrate several examples aiming at therapeutic applications with CpG‐based immunostimulatory and siRNA‐based gene silencing oligonucleotides.  相似文献   

7.
Self‐assembled protein nanoparticles have attracted much attention in biomedicine because of their biocompatibility and biodegradability. Protein nanoparticles have become widely utilized as diagnostic or therapeutic agents for various cancers. However, there are no reports that protein nanoparticles can specifically target mitochondria. This targeting is desirable, since mitochondria are critical in the development of cancer cells. In this study, the discovery of a novel self‐assembled metal protein nanoparticle, designated GST‐MT‐3, is reported, which targets the mitochondria of cancer cells within 30 min in vitro and rapidly accumulates in tumors within 1 h in vivo. The nanoparticles chelate cobalt ions [GST‐MT‐3(Co2+)], which induces reactive oxygen species (ROS) production and reduces the mitochondrial membrane potential. These effects lead to antitumor activity in vivo. GST‐MT‐3(Co2+) with covalently conjugated paclitaxel synergistically suppress tumors and prolong survival. Importantly, the effective dosage of paclitaxel is 50‐fold lower than that utilized in standard chemotherapy (0.2 vs 10 mg kg?1). To the best of the authors' knowledge, GST‐MT‐3 is the first reported protein nanoparticle that targets mitochondria. It has the potential to be an excellent platform for combination therapies.  相似文献   

8.
Decades of research efforts into atomic crystallization phenomenon have led to a comprehensive understanding of the pathways through which atoms form different crystal structures. With the onset of nanotechnology, methods that use colloidal nanoparticles (NPs) as nanoscale “artificial atoms” to generate hierarchically ordered materials are being developed as an alternative strategy for materials synthesis. However, the assembly mechanisms of NP‐based crystals are not always as well‐understood as their atomic counterparts. The creation of a tunable nanoscale synthon whose assembly can be explained using the context of extensively examined atomic crystallization will therefore provide significant advancement in nanomaterials synthesis. DNA‐grafted NPs have emerged as a strong candidate for such a “programmable atom equivalent” (PAE), because the predictable nature of DNA base‐pairing allows for complex yet easily controlled assembly. This Review highlights the characteristics of these PAEs that enable controlled assembly behaviors analogous to atomic phenomena, which allows for rational material design well beyond what can be achieved with other crystallization techniques.  相似文献   

9.
A postsynthetic method for stabilizing colloidal crystals programmed from DNA is developed. The method relies on Ag+ ions to stabilize the particle‐connecting DNA duplexes within the crystal lattice, essentially transforming them from loosely bound structures to ones with very strong interparticle links. Such crystals do not dissociate as a function of temperature like normal DNA or DNA‐interconnected superlattices, and they can be moved from water to organic media or the solid state, and stay intact. The Ag+‐stabilization of the DNA bonds is accompanied by a nondestructive ≈25% contraction of the lattice, and both the stabilization and contraction are reversible with the chemical extraction of the Ag+ ions, by AgCl precipitation with NaCl. This synthetic tool is important, since it allows scientists and engineers to study such crystals in environments that are incompatible with structures made by conventional DNA programmable methods and without the influence of a matrix such as silica.  相似文献   

10.
11.
The fundamental challenge in designing transparent pressure sensors is the ideal combination of high optical transparency and high pressure sensitivity. Satisfying these competing demands is commonly achieved by a compromise between the transparency and usage of a patterned dielectric surface, which increases pressure sensitivity, but decreases transparency. Herein, a design strategy for fabricating high‐transparency and high‐sensitivity capacitive pressure sensors is proposed, which relies on the multiple states of nanoparticle dispersity resulting in enhanced surface roughness and light transmittance. We utilize two nanoparticle dispersion states on a surface: (i) homogeneous dispersion, where each nanoparticle (≈500 nm) with a size comparable to the visible light wavelength has low light scattering; and (ii) heterogeneous dispersion, where aggregated nanoparticles form a micrometer‐sized feature, increasing pressure sensitivity. This approach is experimentally verified using a nanoparticle‐dispersed polymer composite, which has high pressure sensitivity (1.0 kPa–1), and demonstrates excellent transparency (>95%). We demonstrate that the integration of nanoparticle‐dispersed capacitor elements into an array readily yields a real‐time pressure monitoring application and a fully functional touch device capable of acting as a pressure sensor‐based input device, thereby opening up new avenues to establish processing techniques that are effective on the nanoscale yet applicable to macroscopic processing.  相似文献   

12.
For nanocomposites containing nanoparticles, the thickness of the inclusion/matrix interface may be comparable to the particle sizes. Therefore, the effect of interfaces on the elastic and conductive properties may be substantial. We show that it is controlled, mainly, by the interface thickness and is much less sensitive to the character of the variation. Analysis is done by identifying an equivalent homogeneous inclusion that produces the same effect as the graded one.  相似文献   

13.
Photoresponsive DNA nanomaterials represent a new class of remarkable functional materials. By adjusting the irradiation wavelength, light intensity, and exposure time, various photocontrolled DNA‐based systems can be reversibly or irreversibly regulated in respect of their size, shape, conformation, movement, and dissociation/association. This Review introduces the most updated progress in the development of photoresponsive DNA‐based system and emphasizes their advantages over other stimuli‐responsive systems. Their design and mechanisms to trigger the photoresponses are shown and discussed. The potential application of these photon‐responsive DNA nanomaterials in biology, biomedicine, materials science, nanophotonic and nanoelectronic are also covered and described. The challenges faced and further directions of the development of photocontrolled DNA‐based systems are also highlighted.  相似文献   

14.
15.
16.
A novel method for synthesizing and photopatterning colloidal crystals via light-responsive DNA is developed. These crystals are composed of 10–30 nm gold nanoparticles interconnected with azobenzene-modified DNA strands. The photoisomerization of the azobenzene molecules leads to reversible assembly and disassembly of the base-centered cubic (bcc) and face-centered cubic (fcc) crystalline nanoparticle lattices. In addition, UV light is used as a trigger to selectively remove nanoparticles on centimeter-scale thin films of colloidal crystals, allowing them to be photopatterned into preconceived shapes. The design of the azobenzene-modified linking DNA is critical and involves complementary strands, with azobenzene moieties deliberately staggered between the bases that define the complementary code. This results in a tunable wavelength-dependent melting temperature (Tm) window (4.5–15 °C) and one suitable for affecting the desired transformations. In addition to the isomeric state of the azobenzene groups, the size of the particles can be used to modulate the Tm window over which these structures are light-responsive.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号