首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Cemented tailings backfill(CTB) structures are important components of underground mine stopes. It is important to investigate the characteristics and dynamic behavior of CTB materials because they are susceptible to disturbance by dynamic loading, such as excavation and blasting. In this study, the authors present the results of a series of Split–Hopkinson pressure bar(SHPB) single and cyclic impact loading tests on CTB specimens to investigate the long-term dynamic mechanical properties of CTB. The stress–strain relationship, dynamic strength, and dynamic failure characteristics of CTB specimens are analyzed and discussed to provide valuable conclusions that will improve our knowledge of CTB long-term mechanical behavior and characteristics. For instance, the dynamic peak stress under cyclic impact loading is approximately twice that under single impact loading, and the CTB specimens are less prone to fracture when cyclically loaded. These findings and conclusions can provide a new set of references for the stability analysis of CTB materials and help guide mine designers in reducing the amount of binding agents and the associated mining cost.  相似文献   

2.
The dynamic strength properties of the intermittently jointed mediums are studied using model test to investigate the jointed rock mass behavior under dynamic cyclic load. The model test results demonstrate that (i) the dynamic strength of the jointed samples increases with the loading frequency and decreases with the loading loops; (ii) the dynamic residual strength will not be zero like the static residual strength under one-axle loading condition; (iii) the dynamic strength changes greatly with the joint density and joint angle, and it differs from that of the static strength which reaches the lowest at an angle of 45° + ψ/2, while in the dynamic case, the lowest strength is at the angle of 45°.  相似文献   

3.
In the paper, a melt extraction method was used to fabricate Cu–4Ni–14Al (wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transformation. The microstructures and superelasticity behavior of the fibers were studied via scanning electron microscopy (SEM) and a dynamic mechanical analyzer (DMA), respectively. Appropriate heat treatment further improves the plasticity of Cu-based alloys. The serration behavior observed during the loading process is due to the multiple martensite phase transformation.  相似文献   

4.
Fatigue analysis has always been a concern in the design and assessment of Mg alloy structure components subjected to cyclic loading, and research on the cyclic plasticity is fundamental to investigate the corresponding fatigue failure. Thus, this work reviews the progress in the cyclic plasticity of Mg alloys. First, the existing macroscopic and microscopic experimental results of Mg alloys are summarized. Then, corresponding macroscopic phenomenological constitutive models and crystal plasticity-based models are reviewed. Finally, some conclusions and recommended topics on the cyclic plasticity of Mg alloys are provided to boost the further development and application of Mg alloys.  相似文献   

5.
The ordinary cemented tailings backfill(CTB)is a cement-based composite prepared from tailings,cementitious materials,and water.In this study,a series of laboratory tests,including uniaxial compression,digital image correlation measurement,and scanning electron microscope characteristics of fiber-reinforced CTB(FRCTB),was conducted to obtain the uniaxial compressive strength(UCS),failure evolution,and microstructural characteristics of FRCTB specimens.The results show that adding fibers could increase the UCS values of the CTB by 6.90%to 32.76%.The UCS value of the FRCTB increased with the increase in the polypropylene(PP)fiber content.Moreover,the reinforcement effect of PP fiber on the CTB was better than that of glass fiber.The addition of fiber could increase the peak strain of the FRCTB by0.39%to 1.45%.The peak strain of the FRCTB increased with the increase in glass fiber content.The failure pattern of the FRCTB was coupled with tensile and shear failure.The addition of fiber effectively inhibited the propagation of cracks,and the bridging effect of cracks by the fiber effectively improved the mechanical properties of the FRCTB.The findings in this study can provide a basis for the backfilling design and optimization of mine backfilling methods.  相似文献   

6.
Wind power has attracted increasing attention as a renewable and clean energy. Gear fault frequently occurs under extreme environment and complex loads. The time-varying meshing stiffness is one of the main excitations. This study proposes a 5 degree-of-freedom torsional vibration model for the planetary gear system. The influence of some parameters (e.g., contact ratio and phase difference) is discussed under different conditions of a single teeth pair and double pairs of teeth. The impact load caused by the teeth face fault, ramped load induced by the complex wind conditions, and the harmonic excitation are investigated. The analysis of the time-varying meshing stiffness and the dynamic meshing force shows that the dynamic design under different loads can be made to avoid resonance, can provide the basis for the gear fault location of a wind turbine, and distinguish the fault characteristics from the vibration signals.  相似文献   

7.
Concrete filled steel tubular (CFST) diagrid structures usually have connections intersected by four oblique CFST columns. In order to investigate the performance, capacity and failure mechanism of the connections, two 1/5.5-scale specimens were tested under monotonic axial loading. The parameters in the study were the separation angle between columns. While the test was being conducted, the deflection, stress, failure pattern and capacity of the specimens were obtained and analyzed. In addition, the connection was analyzed using the general finite element analysis (FEA) software ABAQUS, with the purpose of investigating the mechanism, the weakness, the distribution of stress, and the bearing capacity of the connections. Experimental and numerical results indicate that the connecting separation angles resulted in the difference of failure modes and the mechanical behavior of the connections was similar to the behavior of CFST short columns.  相似文献   

8.
The dynamic fracture process of fiber-reinforced com-posite materials due to impact loading is a complex me-chanical phenomenon. There have been much profound researches by means of theoretical analysis, experiment and numerical simulation[1,2]. But most of them focused on two aspects: the orientation of dynamic crack growth is either parallel to the fiber direction, or along a bimaterial interface of two fiber-reinforced composites. They simply assumed the mechanical model of fiber-reinforced…  相似文献   

9.
《矿物冶金与材料学报》2020,27(9):1301-1308
To quickly predict the fatigue limit of 6061 aluminum alloy, two assessment methods based on the temperature evolution and the steady ratcheting strain difference under cyclic loading, respectively, were proposed. The temperature evolutions during static and cyclic loadings were both measured by infrared thermography. Fatigue tests show that the temperature evolution was closely related to the cyclic loading, and the cyclic loading range can be divided into three sections according to the regular of temperature evolution in different section. The mechanism of temperature evolution under different cyclic loadings was also analyzed due to the thermoelastic, viscous, and thermoplastic effects. Additionally, ratcheting strain under cyclic loading was also measured, and the results show that the evolution of the ratcheting strain under cyclic loading above the fatigue limit undergone three stages: the first increasing stage, the second steady state, and the final abrupt increase stage. The fatigue limit of the 6061 aluminum alloy was quickly estimated based on transition point of linear fitting of temperature increase and the steady value of ratcheting strain difference. Besides, it is feasible and quick of the two methods by the proof of the traditional S–N curve.  相似文献   

10.
Alloying is a good approach to increasing its strength but leads to a reduction of damping to pure magnesium.Classifying the alloying characteristics of various alloying elements in magnesium alloys and their combined effects on the damping and mechanical properties of magnesium alloys is important.In this paper,the properties of the Mg-0.6wt%X binary alloys were analyzed through strength measurements and dynamic mechanical analysis.The effects of foreign atoms on solid-solution strengthening and dislocation damping were studied comprehensively.The effect of solid solubility on damping capacity can be considered from two perspectives:the effect of single solid-solution atoms on the damping capacities of the alloy,and the effect of solubility on the damping capacities of the alloy.The results provide significant information that is useful in developing high-strength,high-damping magnesium alloys.This study will provide scientific guidance regarding the development of new types of damping magnesium alloys.  相似文献   

11.
One of the most important issues to resolve in parts manufactured from rapid manufacturing (RM) technologies is to know their behavior working under real conditions. Total quality manufacturing (TQM) is only possible if mechanical properties are well known in the design stage depending on the processing parameters. This work is mainly focused on testing of several samples made with different selective laser sintering (SLS) parameters and technologies. This procedure is the starting point to establish a basis for designing for RM and the standardization of RM testing. The experiments and the analysis of variance (ANOVA) analyzed the effects of several factors on mechanical properties. The SLS technologies were 3DSystem and EOS. The results show which factor has a large effect on the variables and the interaction between them. The conclusions are very useful for developing rules for designing (designing for RM) and creating new standard rules (ISO, AISI, and DIN) for RM materials and parts testing. The ANOVA gives a better knowledge of the effects of these factors and eliminates unimportant parameters.  相似文献   

12.
The understanding of mechanical responses of individ-ual macromolecules under a small external load (usually F<0.5 nN) is of profound importance because the induced conformational transition can result in the change of bio-logical functions[1?3]. The advent of new instrumentations, especially the development of Pico-Newton force tech-nology, has made it possible to investigate the dynamic behavior of single biomolecule and manipulate it to make direct measurements of its elastic properties[4?…  相似文献   

13.
It's very important to simulate impact load of debris flow effectively and to investigate dynamic response of architectures under dynamic impact of debris flow, which are necessary to design disaster mitigation construction. Firstly, reinforced concrete domestic architectures in mountain areas of western China had been chosen as main architecture style. The bearing load style and the destructed shape of reinforced flamed construction impacted by discontinuous viscous debris flow were studied systematically. Secondly, Jiangjia Ravine debris flow valley in Yunnan Province, China had been chosen as research region. Utilizing based data from fieldwork and practical survey, the authors simulated and calculated theoretically impact force of discontinuous viscous debris flow. Thirdly, an impact data collecting system (IMHE IDCS) was designed and developed to fulfill designed simulation experiments. Finally, a series of impact test of researched structure models had been fulfilled. During experiment, the destructed shape and course of models were observed and the dynamic displacement data and main natural frequency data of models were collected and analyzed.  相似文献   

14.
The mechanical properties and constitutive behaviors of as-cast AA7050 in both the solid and semi-solid states were determined using the on-cooling and in situ solidification approaches, respectively. The results show that the strength in the solid state tends to increase with decreasing temperature. The strain rate plays an important role in the stress–strain behaviors at higher temperatures, whereas the influence becomes less pronounced and irregular when the temperature is less than 250°C. The experimental data were fitted to the extended Ludwik equation, which is suitable to describe the mechanical behavior of the materials in the as-cast state. In the semi-solid state, both the strength and ductility of the alloy are high near the solidus temperature and decrease drastically with decreasing solid fraction. As the solid fraction is less than 0.97, the maximum strength only slightly decreases, whereas the post-peak ductility begins to increase. The experimental data were fitted to the modified creep law, which is used to describe the mechanical behavior of semi-solid materials, to determine the equivalent parameter fGBWL, i.e., the fraction of grain boundaries covered by liquid phase.  相似文献   

15.
The hot deformation behavior of uniform fine-grained GH4720Li alloy was studied in the temperature range from 1040 to 1130℃ and the strain-rate range from 0.005 to 0.5 s?1 using hot compression testing. Processing maps were constructed on the basis of compression data and a dynamic materials model. Considerable flow softening associated with superplasticity was observed at strain rates of 0.01 s?1 or lower. According to the processing map and observations of the microstructure, the uniform fine-grained microstructure remains intact at 1100℃ or lower because of easily activated dynamic recrystallization (DRX), whereas obvious grain growth is observed at 1130℃. Metallurgical instabilities in the form of non-uniform microstructures under higher and lower Zener–Hollomon parameters are induced by local plastic flow and primary γ′ local faster dissolution, respectively. The optimum processing conditions at all of the investigated strains are proposed as 1090–1130℃ with 0.08–0.5 s?1 and 0.005–0.008 s?1 and 1040–1085℃ with 0.005–0.06 s?1.  相似文献   

16.
Seepage properties of a single rock fracture subjected to triaxial stresses   总被引:1,自引:0,他引:1  
Coupled properties of seepage and stress fields of rock fractures greatly influence the safety of geotechnical engineering work. Based on the closing deformation principle of a single rock fracture, equations describing relationships of aperture and triaxial stresses are developed, and coupled models of seepage and triaxial stresses are proposed. Seepage tests are conducted under triaxial stress conditions by adopting hard granite specimens with an artificial fracture. The results show that the normal stress, lateral stress and seepage pressure significantly affect the flow behavior of rock fractures, and that hydraulic conductivity decreases with increasing normal stress, but increases with rising lateral stress or seepage pressure. In addition, an exponential function provides a good representation of the seepage characteristics of a single rock fracture subjected to triaxial stresses.  相似文献   

17.
In this study, an isotropic hardening constitutive model is presented to study the behavior of frozen soil under impact loading. In plasticity, a modified Drucker–Prager yield function is adopted. Based on the experimental investigations at different strain rates and different temperatures by means of split Hopkinson pressure bar, the Drucker–Prager criterion has been modified with consideration in the effect of strain rate, and the model parameters have been determined. Compared the constitutive model with the experimental results, the predicted tendencies of the model corresponded well to the test curves.  相似文献   

18.
《矿物冶金与材料学报》2020,27(8):1009-1020
The mining industry produces billions of tons of mine tailings annually. However, because of their lack of economic value, most of the tailings are discarded near the mining sites, typically under water. The primary environmental concerns of mine tailings are related to their heavy metal and sulfidic mineral content. Oxidation of sulfidic minerals can produce acid mine drainage that leaches heavy metals into the surrounding water. The management of tailing dams requires expensive construction and careful control, and there is the need for stable, sustainable, and economically viable management technologies. Alkali activation as a solidification/stabilization technology offers an attractive way to deal with mine tailings. Alkali activated materials are hardened, concrete-like structures that can be formed from raw materials that are rich in aluminum and silicon, which fortunately, are the main elements in mining residues. Furthermore, alkali activation can immobilize harmful heavy metals within the structure. This review describes the research on alkali activated mine tailings. The reactivity and chemistry of different minerals are discussed. Since many mine tailings are poorly reactive under alkaline conditions, different pretreatment methods and their effects on the mineralogy are reviewed. Possible applications for these materials are also discussed.  相似文献   

19.
Thermomechanical experiments were carried out to reproduce the hot stamping process and to investigate the effects of process parameters on the microstructure and mechanical properties of stamped parts. The process parameters, such as austenitizing temperature, soaking time, initial deformation temperature and cooling rate, are studied. The resulting microstructures of specimens were observed and analyzed. To evaluate the mechanical properties of specimens, tensile and hardness tests were also performed at room temperature. The optimum parameters to achieve the highest tensile strength and the desired microstructure were acquired by comparing and analyzing the results. It is indicated that hot deformation changes the transformation characteristics of 22MnB5 steel. Austenite deformation promotes the austenite-to-ferrite transformation and elevates the critical cooling rate to induce a fully martensitic transformation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号