首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 74 毫秒
1.
喀喇昆仑山分布有众多的跃动型冰川,跃动机理存在异质性。使用Landsat、Sentinel-1A、TSX/TDX等多源遥感数据,获取了中喀喇昆仑布拉尔杜冰川在跃动期间冰川表面高程和表面流速变化。结果表明:布拉尔杜冰川从2006年开始,流速逐渐增加;到2013年之后进入快速运动期,最高流速可达4.9 m·d-1;2015年8月底,冰川表面速度急剧下降,随后保持较低的流速至2016年1月,而后流速再次增加,到同年2月初便进入平静期。2000—2014年冰川主干中上游有明显隆起,而冰川接收区明显减薄,最大减薄达89 m;2014—2018年冰川主干中上游以及各支流均有不同程度的减薄,冰川主干的接收区高程显著增加,最大增厚120 m。根据冰川表面高程变化以及流速变化的特征,认为布拉尔杜冰川的支流引发了此次跃动,且本次跃动受水文机制的影响较大;结合现有的数据和文献,推断布拉尔杜冰川的跃动间隔约为40 a;为喀喇昆仑冰川跃动研究提供更多的实例,也可为此区域冰川灾害预警研究提供参考。  相似文献   

2.
3.
基于GIS技术,利用GPS测量数据和1962年地形图分别建立两期DEM,通过对比重点研究了四工河4号冰川1962-2009年冰舌区的表面高程变化特征。结果表明:1962-2009年间,冰舌区平均减薄15±10 m,年均减薄约0.32±0.2 m,冰储量亏损达(14.3±9.5)×10-3km3,折合水当量(12.9±8.6)×10-3km3。不同海拔、坡度区间冰面高程变化差异显著,海拔较低、坡度较缓区域的变化最为强烈。在气候变暖的趋势下,四工河4号冰川发生强烈消融,标志着博格达峰地区的冰川正处于物质严重亏损的状态,直接影响到流域水资源状况。  相似文献   

4.
基于多期RTK-GPS(Real Time Kinematic-Global Position System)高精度测量数据,通过冰面高程变化开展北极Austre Lovénbreen冰川物质变化研究。首先基于冰面GPS测点开展多种空间插值方法的比对,兼顾冰面DEM(Digital Elevation Model)的平滑特性以及插值结果的准确性,优选自然邻域法作为冰面地形的插值算法;继而利用2013—2015年3期RTK-GPS数据,通过冰面地形内插和测线交叉点比对两种方式开展了Austre Lovénbreen冰川表面高程变化的分析,结果表明交叉点方法的精度更高,而地形内插法在测线之间的空白区域存在较大误差。最后通过冰雪密度估计将高程变化转化为水当量,计算相应时段的冰川物质平衡:积累区密度取500 kg·m^-3,消融区密度取900 kg·m^-3,得到2013—2014年和2014—2015年的物质平衡分别为–0.277m w.e.和0.065m w.e.。该物质平衡结果相较于传统的冰面物质平衡而言存在一定的差异,主要源于测量时段的不一致,以及可能存在的冰川内部物质变化。此外,将RTK-GPS交叉点高程的年际变化与所在高程进行联合分析,发现冰川物质变化与冰川高程分布既有较强的相关性,部分区域也存在一些差异。总体而言,冰川物质年变化的海拔梯度为2.67‰,在海拔越低的区域冰川消融得越快,随海拔上升消融减慢,在高海拔或冰川边缘区域还存在少量物质积累。  相似文献   

5.
6.
Worldwide examination of glacier change is based on detailed observations from only a small number of glaciers. The ground-based detailed individual glacier monitoring is of strong need and extremely important in both regional and global scales. A long-term integrated multi-level monitoring has been carried out on Urumqi Glacier No. 1 (UG1) at the headwaters of the Urumqi River in the eastern Tianshan Mountains of Central Asia since 1959 by the Tianshan Glaciological Station, Chinese Acamedey of Sciences (CAS), and the glaciological datasets promise to be the best in China. The boundaries of all glacier zones moved up, resulting in a shrunk accumulation area. The stratigraphy features of the snowpack on the glacier were found to be significantly altered by climate warming. Mass balances of UG1 show accelerated mass loss since 1960, which were attributed to three mechanisms. The glacier has been contracting at an accelerated rate since 1962, resulting in a total reduction of 0.37 km2 or 19.3% from 1962 to 2018. Glacier runoff measured at the UG1 hydrometeorological station demonstrates a significant increase from 1959 to 2018 with a large interannual fluctuation, which is inversely correlated with the glacier's mass balance. This study analyzes on the changes in glacier zones, mass balance, area and length, and streamflow in the nival glacial catchment over the past 60 years. It provides critical insight into the processes and mechanisms of glacier recession in response to climate change. The results are not only representative of those glaciers in the Tianshan mountains, but also for the continental-type throughout the world. The direct observation data form an essential basis for evaluating mountain glacier changes and the impact of glacier shrinkage on water resources in the interior drainage rivers within the vast arid and semi-arid land in northwestern China as well as Central Asia.  相似文献   

7.
Glaciers are the most important fresh-water resources in arid and semi-arid regions of western China. According to the Second Chinese Glacier Inventory (SCGI), primarily compiled from Landsat TM/ETM+ images, the Qilian Mountains had 2684 glaciers covering an area of 1597.81±70.30 km2 and an ice volume of ~84.48 km3 from 2005 to 2010. While most glaciers are small (85.66% are <1.0 km2), some larger ones (12.74% in the range 1.0–5.0 km2) cover 42.44% of the total glacier area. The Laohugou Glacier No.12 (20.42 km2) located on the north slope of the Daxue Range is the only glacier >20 km2 in the Qilian Mountains. Median glacier elevation was 4972.7 m and gradually increased from east to west. Glaciers in the Qilian Mountains are distributed in Gansu and Qinghai provinces, which have 1492 glaciers (760.96 km2) and 1192 glaciers (836.85 km2), respectively. The Shule River basin contains the most glaciers in both area and volume. However, the Heihe River, the second largest inland river in China, has the minimum average glacier area. A comparison of glaciers from the SCGI and revised glacier inventory based on topographic maps and aerial photos taken from 1956 to 1983 indicate that all glaciers have receded, which is consistent with other mountain and plateau areas in western China. In the past half-century, the area and volume of glaciers decreased by 420.81 km2 (–20.88%) and 21.63 km3 (–20.26%), respectively. Glaciers with areas <1.0 km2 decreased the most in number and area recession. Due to glacier shrinkage, glaciers below 4000 m completely disappeared. Glacier changes in the Qilian Mountains presented a clear longitudinal zonality, i.e., the glaciers rapidly shrank in the east but slowly in the central-west. The primary cause of glacier recession was warming temperatures, which was slightly mitigated with increased precipitation.  相似文献   

8.
The glaciers in the Sanjiangyuan Nature Reserve of China (SNRC) are a significant water resource for the Yangtze,Yellow,and Mekong rivers.Based on Landsat Thematic Mapper(TM)/Operational Land Imager (OLI) images acquired in 2000,2010,and 2018,the outlines of glaciers in the SNRC were obtained by combining band ratio method with manual interpretation.There were 1714 glaciers in the SNRC in 2018,with an area of 2331.15±54.84 km2,an ice volume of 188.90±6.41 km3,and an average length of 1475.4±15 m.During 2000-2018,the corresponding values of glaciers decreased by 69,271.95±132.06 km2,18.59±8.83 km3,and 84.75±34 m,respectively.Glaciers in the Yangtze River source area witnessed the largest area loss (-154.45 km2),whereas glaciers in the Mekong River source area experienced the fastest area loss (-2.02%·a-1) and the maximum reduction of the average length (-125.82 m).Overall,the retreat of glaciers in the SNRC exhibited an accelerating trend.Especially,the loss rate of glacier area in the Yellow River source area in 2010-2018 was more than twice that in 2000-2010.The glacier change is primarily attributed to the significant rise in temperature during the ablation period.Some other factors including the size,orientation and terminus elevation of glaciers also contributed to the heterogeneity of glacier change.  相似文献   

9.
The Laohugou Glacier No. 12 is the largest valley glacier in Qilian Mountains, which is located in northern Qinghai-Tibet Plateau. Movement is the basic characteristic of glaciers, and is also an important distinction from other terrestrial natural ice. Glacier changes not only reflect climate change, but also play an important role in humanity society. In the arid regions of western China, glaciers are becoming an important water source. We use the GPS receiver (South-Lingrui S82) as data platform with the aid of RTK measurement technology to observe the surface velocity of Laohugou Glacier No. 12. Surface velocity data shows that the maximum value appears at an altitude of 4,750–4,850 m during the period of 2008–2009. During this period, the west branch surface velocity reached 32.6 m per year at an altitude near 4,830 m, the east branch surface velocity reached 32.4 m per year at the altitude near 4,770 m. Comparing the surface velocity data during 2008–2009 with observation results in 1959, the glacier velocity slowed down about 11%.  相似文献   

10.
To investigate the characteristics of ablation at Koryto Glacier, a mountain glacier under maritime climate in Kamchatka Peninsula, Russia, we made field observations from August to early September 2000. At a site near the equilibrium line, the 31‐day average net radiation, sensible heat flux, and latent heat flux were 43, 59 and 31 W?2, respectively. We developed a new distributed ablation model, which only needs measurements of air temperature and global radiation at one site. Hourly ablation rates at this site obtained by the energy balance method are related to measured air temperature and global radiation by linear multiple regression. A different set of multiple regression coefficients is fitted for snow and ice surfaces. Better estimates of ablation rate can be obtained by this approach than by other temperature index models. These equations are then applied to each grid cell of a digital elevation model to estimate spatially distributed hourly melt. Air temperature is extrapolated using a constant temperature lapse rate and global radiation is distributed considering topographic effects. The model enables us to calculate the hourly spatial distribution of ablation rates within the glacier area and could well provide a realistic simulation of ablation over the whole glacier.  相似文献   

11.
为认识全球变暖背景下中国西部大陆性冰川与海洋性冰川物质平衡变化及其对气候响应,本研究以天山乌鲁木齐河源1号冰川和藏东南帕隆94号冰川为例,结合大西沟与察隅站气象资料,对1980 — 2015年两条冰川的物质平衡变化特征及差异进行了分析。结果表明:36 a来乌源1号冰川与帕隆94号冰川物质平衡总体上均呈下降趋势,累积物质平衡达-17102与-8159 mm w.e.,相当于冰川厚度减薄19与9.01 m,且分别于1996、2004年左右发生突变。同期两条冰川所处区域年均温呈显著上升趋势,而降水量却表现出不同的变化态势;二者年内气温分配相仿,但降水分配差异较大。初步分析认为气温上升是导致乌源1号冰川与帕隆94号冰川物质亏损的主要原因,冰川区气温和降水变化幅度的差异和地性因子(坡度、冰川面积)的不同使得乌源1号冰川对气候变化响应的敏感性高于帕隆94号冰川,由于目前海洋性冰川物质平衡监测时段相对较短,为深入研究中国西部冰川物质平衡变化及过程仍需加强对冰川的持续观测。  相似文献   

12.
Zhang  Qifei  Chen  Yaning  Li  Zhi  Li  Yupeng  Xiang  Yanyun  Bian  Wei 《地理学报(英文版)》2019,29(6):984-1000
Journal of Geographical Sciences - In this study, we analyzed glacier changes in the Aksu River Basin during the period 1975–2016, based on Landsat MSS/TM/ETM+/OLI imagery analysis and the...  相似文献   

13.
近年来,无人机技术发展迅速。无人机的灵活、便携、超高分辨率等特性使其在冰川变化监测上具有很好的发展前景。论文以青藏高原腹地的唐古拉山小冬克玛底冰川为例,首次在海拔5400 m以上的地区开展了无人机航测,通过非冰川区的基岩对2019年7月20日、2019年9月27日和2020年7月16日3期航测产品进行相对校正,分析了小冬克玛底冰川在物质平衡年和消融期内的变化情况,并进一步讨论了无人机在冰川区观测时所遇到的问题及其优势,以期为后续研究提供参考。结果表明:利用无人机技术能够实现冰川在消融期内的末端、面积以及高程变化监测,并对冰川的细部特征进行分析,适合于小区域单条冰川的变化监测。  相似文献   

14.
西藏枪勇冰川冰下富碎屑化学沉淀特征与冰下过程   总被引:4,自引:0,他引:4  
西藏枪勇冰川是我国现代大陆性冰川之一,在其外缘冰床背冰面的基岩表面和节理裂隙中发现了富碎屑化学沉淀,为研究冰岩界面的物理、化学过程提供了良好载体。对该区富碎屑化学沉淀理化特征的研究表明:枪勇冰川冰下存在压力融水,冰下碎屑,特别是陆源气溶胶粉尘来源的碎屑,能与融水及其中溶解的CO2发生化学反应,释放出Ca++;Ca++随融水向下游方向迁移,在冰床背冰面,由于上覆压力减小,融水中的CO2逸出并发生复冰作用,使融水中的Ca++重新富集,形成CaCO3沉淀,并将融水中的粉砂粘粒碎屑胶结,形成富碎屑化学沉淀;枪勇冰川冰下融水的存在,证明其冰下存在温度接近融点的融区,有类似于温性冰川的滑动过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号