首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.  相似文献   

2.
The Asia-Pacific (AP) region has experienced faster warming than the global average in recent decades and has experienced more climate extremes, however little is known about the response of vegetation growth to these changes. The updated Global Inventory Modeling and Mapping Studies third-generation global satellite Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index dataset and gridded reanalysis climate data were used to investigate the spatiotemporal changes in both trends of vegetation dynamic indicators and climatic variables. We then further analyzed their relations associated with land cover across the AP region. The main findings are threefold: (1) at continental scales the AP region overall experienced a gradual and significant increasing trend in vegetation growth during the last three decades, and this NDVI trend corresponded with an insignificant increasing trend in temperature; (2) vegetation growth was negatively and significantly correlated with the Pacific Decadal Oscillation index and the El Niño/Southern Oscillation (ENSO) in AP; and (3) at pixel scales, except for Australia, both vegetation growth and air temperature significantly increased in the majority of study regions and vegetation growth spatially correlated with temperature; In Australia and other water-limited regions vegetation growth positively correlated with precipitation.  相似文献   

3.
宁夏不同植被类型归一化指数与气象因子分析   总被引:1,自引:0,他引:1  
针对植被动态对气候变化响应的问题,提出了从小尺度范围研究植被指数与气象因子的相关性,采用2000—2010年MODIS归一化植被指数数据集和宁夏10个气象站2000—2010年逐月气象资料,分析了气象站点周围10km缓冲区内不同植被类型NDVI与气象因子的相关性。结果表明:2000—2010年宁夏不同植被类型NDVI均呈上升趋势;极端最低气温、最高气温、平均气温、平均相对湿度以及日照时数对宁夏地区植被的生长有明显的滞后效应;植被NDVI与极端最低气温的相关性系数最大,其次是平均气温;不同植被类型的NDVI与极端最高气温、极端最低气温以及平均气温的相关性由南向北呈现波动性增长,与降水量的相关性由南向北呈现明显的减小趋势;且耕地NDVI与各气象因子的相关性最大。  相似文献   

4.
Global climate change has led to significant vegetation changes in the past half century. North China Plain, the most important grain production base of china, is undergoing a process of prominent warming and drying. The vegetation coverage, which is used to monitor vegetation change, can respond to climate change (temperature and precipitation). In this study, GIMMS (Global Inventory Modelling and Mapping Studies)-NDVI (Normalized Difference Vegetation Index) data, MODIS (Moderate-resolution Imaging Spectroradiometer) – NDVI data and climate data, during 1981–2013, were used to investigate the spatial distribution and changes of vegetation. The relationship between climate and vegetation on different spatial (agriculture, forest and grassland) and temporal (yearly, decadal and monthly) scales were also analyzed in North China Plain. (1) It was found that temperature exhibiting a slight increase trend (0.20 °C/10a, P < 0.01). This may be due to the disappearance of 0 °C isotherm, the rise of spring temperature. At the same time, precipitation showed a significant reduction trend (−1.75 mm/10a, P > 0.05). The climate mutation period was during 1991–1994. (2) Vegetation coverage slight increase was observed in the 55% of total study area, with a change rate of 0.00039/10a. Human activities may not only accelerate the changes of the vegetation coverage, but also c effect to the rate of these changes. (3) Overall, the correlation between the vegetation coverage and climatic factor is higher in monthly scale than yearly scale. The correlation analysis between vegetation coverage and climate changes showed that annual vegetation coverage was better correlatend with precipitation in grassland biome; but it showed a better correlated with temperature i the agriculture biome and forest biome. In addition, the vegetation coverage had sensitive time-effect respond to precipitation. (4) The vegetation coverage showed the same increasing trend before and after the climatic variations, but the rate of increase slowed down. From the vegetation coverage point of view, the grassland ecological zone had an obvious response to the climatic variations, but the agricultural ecological zones showed a significant response from the vegetation coverage change rate point of view. The effect of human activity in degradation region was higher than that in improvement area. But after the climate abruptly changing, the effect of human activity in improvement area was higher than that in degradation region, and the influence of human activity will continue in the future.  相似文献   

5.
Iraq contains the Great Mesopotamian alluvial plain of the Euphrates and Tigris rivers. Its regional vegetation phenological patterns are worthy of investigation because relatively little is known about the phenology of semi-arid environments, and because their inter-annual variation is expected to be driven by uncertain rainfall and varied topography. The aim of this research was to assess and map the spatial variation in key land surface phenology (LSP) parameters over the last decade and their relation with elevation. It is the first study mapping land surface phenology during last decade over the whole of Iraq, and one of only a few studies on vegetation phenology in a semi-arid environment. Time-series of Moderate Resolution Imaging Spectroradiometer (MODIS) normalised difference vegetation index (NDVI) data at 250 m spatial resolution and 8 day temporal resolution, were employed to map the spatial variation in three LSP parameters for the major vegetation types in Iraq during 2001–2012. LSP parameters were defined by inflection points after smoothing the vegetation phenological signals using the Fourier technique. The estimated key LSP parameters indicated that the relatively shorter length of season (LOS) in the north of Iraq resulted from a delayed start of season (SOS). Greater spatial variation occurred in the SOS than end of season (EOS), which may be due to the spatial distribution of rainfall and temperature as a function of elevation. A positive correlation was observed for SOS and EOS with elevation for all major land cover types with EOS producing the largest positive correlation (R2 = 0.685, R2 = 0.638 and R2 = 0.588, p < 0.05 in shrubland, cropland and grassland, respectively). The magnitude of delay in SOS and EOS increased in all land cover types along a rising elevation gradient where for each 500 m increase, SOS was delayed by around 25 or more days and EOS delayed by around 22 or more days, except for grassland. The SOS and EOS also varied temporally during the last decade, particularly the SOS in the lowland, north of the country where the standard deviation was around 80 to 120 days, due mainly to the practice of crop rotation and the traditional biennial cropping system. Thus, the results of this research emphasize the effect of elevation on key LSP parameters over Iraq, for all major vegetation types.  相似文献   

6.
This paper investigated spatiotemporal dynamic pattern of vegetation, climate factor, and their complex relationships from seasonal to inter-annual scale in China during the period 1982–1998 through wavelet transform method based on GIMMS data-sets. First, most vegetation canopies demonstrated obvious seasonality, increasing with latitudinal gradient. Second, obvious dynamic trends were observed in both vegetation and climate change, especially the positive trends. Over 70% areas were observed with obvious vegetation greening up, with vegetation degradation principally in the Pearl River Delta, Yangtze River Delta, and desert. Overall warming trend was observed across the whole country (>98% area), stronger in Northern China. Although over half of area (58.2%) obtained increasing rainfall trend, around a quarter of area (24.5%), especially the Central China and most northern portion of China, exhibited significantly negative rainfall trend. Third, significantly positive normalized difference vegetation index (NDVI)–climate relationship was generally observed on the de-noised time series in most vegetated regions, corresponding to their synchronous stronger seasonal pattern. Finally, at inter-annual level, the NDVI–climate relationship differed with climatic regions and their long-term trends: in humid regions, positive coefficients were observed except in regions with vegetation degradation; in arid, semiarid, and semihumid regions, positive relationships would be examined on the condition that increasing rainfall could compensate the increasing water requirement along with increasing temperature. This study provided valuable insights into the long-term vegetation–climate relationship in China with consideration of their spatiotemporal variability and overall trend in the global change process.  相似文献   

7.
Climate dominantly controls vegetation over most regions at most times, and vegetation responses to climate change are often asymmetric with temporal effects. However, systematic analysis of the time-lag and time-accumulation effects of climate on vegetation growth, has rarely been conducted, in particular for different vegetation growing phases. Thus, this study aimed to leverage normalized difference vegetation index (NDVI) to determine the spatiotemporal patterns of climatic effects on global vegetation growth considering various scenarios of time-lag and/or accumulation effects. The results showed that (i) climatic factors have time-lag and -accumulation effects as well as their combined effects on global vegetation growth for the whole growing season and its subphases (i.e., the growing and senescent phases). However, these effects vary with climatic factors, vegetation types, and regions. Compared with those of temperature, both precipitation and solar radiation display more significant time-accumulation effects in the whole growing season worldwide, but behave differently in the growing and senescent phases in the middle-high latitudes of the Northern Hemisphere; (ii) compared to the scenario without time effects, considering time-lag and -accumulation effects as well as their combined effects increased by 17 %, 15 %, and 19 % the overall explanatory power of vegetation growth by climate change for the whole growing season, the growing phase, and senescent phase, respectively; (iii) considering the time-lag and -accumulation effects as well as their combined effects, climate change controls 70 % of areas with a significant NDVI variation from 1982 to 2015, and the primary driving factor was temperature, followed by solar radiation and precipitation. This study highlights the significant time-lag and -accumulation effects of climatic factors on global vegetation growth. We suggest that these effects need to be incorporated into dynamic vegetation models to better understand vegetation growth under accelerating climate change.  相似文献   

8.
Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g., 1 km), or in arid, semiarid, and evergreen areas. The uncertainty of estimated NDVIs and NDVIv can cause substantial errors in FVC estimations when a simple linear mixture model is used. To address this problem, this paper proposes a physically based method. The leaf area index (LAI) and directional NDVI are introduced in a gap fraction model and a linear mixture model for FVC estimation to calculate NDVIv and NDVIs. The model incorporates the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) model parameters product (MCD43B1) and LAI product, which are convenient to acquire. Two types of evaluation experiments are designed 1) with data simulated by a canopy radiative transfer model and 2) with satellite observations. The root-mean-square deviation (RMSD) for simulated data is less than 0.117, depending on the type of noise added on the data. In the real data experiment, the RMSD for cropland is 0.127, for grassland is 0.075, and for forest is 0.107. The experimental areas respectively lack fully vegetated and non-vegetated pixels at 1 km resolution. Consequently, a relatively large uncertainty is found while using the statistical methods and the RMSD ranges from 0.110 to 0.363 based on the real data. The proposed method is convenient to produce NDVIv and NDVIs maps for FVC estimation on regional and global scales.  相似文献   

9.
海河流域NDVI对气候变化的响应研究   总被引:5,自引:1,他引:5  
以海河流域为研究区,利用8 km分辨率AVHRR/NDVI数据和气象资料,逐像元对1981-2000年时段的流域NDVI值、年降水量和年均气温的变化率进行分析,计算了NDVI和年降水量、年均气温的相关关系.结果表明,1981-2000年时段内,海河流域年降水量变化总体呈现北部和南部增加,中部减少的趋势,其变化范围在-8...  相似文献   

10.
齐丹宁  胡政军  赵尚民 《测绘通报》2021,(9):98-102,107
研究采矿扰动区内植被变化规律,能够为矿区生态修复提供理论依据.本文以山西省西山煤田为研究区,通过设立对比试验区,利用MODIS/NDVI(2001—2019年)结合同期的气温、降水气候因子,分别从植被指数的时空变化及与气象因子之间的关系等方面展开对比,用于探究采矿扰动区内植被变化情况.研究结果表明:①19年来西山煤田与...  相似文献   

11.
An extensive land cover change was triggered by a series of typhoons, especially Typhoon Morakot in 2009 in Taiwan. The normalized difference vegetation index (NDVI) series from multiple satellite images were applied to monitor the change processes of land cover. This study applied spatiotemporal analysis tools, including empirical orthogonal functions (EOF), and multiple variograms in analyzing space–time NDVI data, and detected the effects of large chronological disturbances in the characteristics of land cover changes. Spatiotemporal analysis delineated the temporal patterns and spatial variability of NDVI caused by these large typhoons. Results showed that mean of NDVI decreased but spatial variablity of NDVI increased after typhoons in the study area. The EOF can clarify the major component of NDVI variations and identify the core area of the NDVI changes. Various approaches showed consistent results that Typhoon Morakot significantly lowered the NDVI in land cover change process. Furthermore, the spatiotemporal analysis is an effective monitoring tool, which advocates the use of the index for the quantification of land cover change and resilience.  相似文献   

12.
太湖水生植被NDVI的时空变化特征分析   总被引:2,自引:0,他引:2  
为了明确太湖不同生态区水生植被长势的变化规律及其影响因子,利用MODIS传感器提供的NDVI数据,分析了太湖2000年—2015年NDVI的时间及空间变化特征。结果表明:太湖水生植被NDVI存在明显的季节变化和年际变化,NDVI每年最小值出现在冬季,最大值出现在植被生长旺盛的8月或9月,其值可达0.35;太湖全湖NDVI多年平均值为0.1,最大值为0.14,出现在2007年。太湖NDVI的空间差异可将太湖划分为不同的植被类型区,太湖西北部(竺山湾和梅梁湾)NDVI最大值可达0.2,植被类型主要以浮游藻类为主,东太湖区域最大值超过0.6,主要以沉水植被为主;太湖不同区域植被动态特征对气象因子的响应也不尽相同,沉水植物生长与平均气温有显著的正相关关系,而浮游植物区的生长状况受平均风速影响较大。  相似文献   

13.
基于地形调节植被指数估算长汀县植被覆盖度   总被引:3,自引:0,他引:3  
植被覆盖度遥感估算最常用的方法是基于植被指数构建模型,但大部分的植被指数没有考虑地形的影响。以福建省长汀县作为研究区,引入能消除地形影响的地形调节植被指数(topography adjusted vegetation index,TAVI),利用像元二分模型估算植被覆盖度,旨在研究TAVI对植被覆盖度估算结果的影响,并与基于归一化差值植被指数(normalized difference vegetation index,NDVI)估算的结果进行比较。根据目视效果和统计指标的分析表明:基于TAVI估算的植被覆盖度精度高于基于NDVI的估算结果,并能有效降低阴坡阳坡间的差异,提高阴坡区域植被覆盖度的估算精度。  相似文献   

14.
针对不同的数据源及时间和空间尺度会使植被覆盖度及其与气象因子影响的结果有所差别这一情况,该文基于青藏高原1982-2012年GIMMS NDVI和2001-2013年MODIS NDVI遥感数据集,结合研究区内12个典型的气象站点数据,进行了青藏高原地区植被覆盖时空动态变化规律及其与气象因子响应的时序分析,并利用重合时间段的数据对比分析了两种传感器在青藏高原地区对植被动态变化监测方面的差异.结果表明:近30年来,青藏高原地区植被呈整体改善趋势,尤其是高海拔地区;不同阶段植被的变化趋势有所不同;两种传感器在反映植被动态变化趋势上差异显著,但两者与气候因子的响应规律相同.  相似文献   

15.
The understanding influence of multiple factors variations on land surface temperature (LST) remains elusive. LST was retrieved by the atmospheric correction algorithms. Based on the correlation coefficients, stepwise regression analysis was developed to examine how multiple factors variability led to LST variations. The differences in LST between impact factors vary depending on time in a day. The elevation and land use types significantly affect the LST in sunny slope or shadow areas has a significantly quadratic curve correlation or a negative linear correlation with it, the influence of slope and aspect is not very significant. LST for forestland, grassland and bare land in the sunny slope and shadow area was the cubic polynomial related to its elevation. Normalized difference vegetation index (NDVI) and normalized difference moisture index (NDMI) effectively express LST in mountainous. LST and NDMI or NDVI have a significantly negative correlation, NDMI is more effective and more applicable for the expression of LST.  相似文献   

16.
基于ASTER数据的归一化差异水体指数的建立及其应用   总被引:3,自引:0,他引:3  
在分析归一化差异水体指数的基础上,根据ASTER数据不同地物的光谱特征,提出了基于ASTER数据的归一化差异化水体指数NDWIASTER1、4。并且利用这一指数进行水体信息的提取,发现这是一种简单易行结果客观有效的提取水体的方法。  相似文献   

17.
本文应用3S技术生成数字高程模型(Digital Elevation Model,DEM),以山东半岛丘陵区为研究对象,解译出27条河流的流域范围。采用空间内插法计算流域内降水量,通过应用3S技术提取了相应年份的NDVI,最后对27个流域的降水量和NDVI进行了相关分析。结果表明:研究区内的NDVI较小,平均NDVI为0.0962;ND-VI与降水量在空间变化上存在一致性,关联程度极其显著(在0.01水平上),关联系数R=0.498>0.478=α0.01(26),呈线性回归关系。  相似文献   

18.
基于NDVI纹理的山东丘陵地区SPOT-5影像果园信息识别研究   总被引:3,自引:1,他引:2  
王大鹏  王周龙  李德一 《测绘科学》2007,32(1):126-127,121
胶东半岛是我国重要的水果生产基地,及时有效地获取果园信息,对指导当地水果生产具有重要意义。在遥感信息提取中,纹理特征是一种有效的辅助信息,但在原始影像中地形阴影对纹理特征有较大影响。本文提出了一种利用NDVI影像的纹理特征和光谱特征从SPOT-5影像自动识别果园信息的方法,消除了地形阴影的影响,取得了86.40%的识别精度。  相似文献   

19.
The main aim of this study is to generate groundwater spring potential maps for the Ningtiaota area (China) using three statistical models namely statistical index (SI), index of entropy (IOE) and certainty factors (CF) models. Firstly, 66 spring locations were identified by field surveys, out of which, 46 (70%) spring locations were randomly selected for training the models and the rest 20 (30%) spring locations were used for validation. Secondly, 12 spring influencing factors, namely slope angle, slope aspect, altitude, profile curvature, plan curvature, sediment transport index, stream power index, topographic wetness index, distance to roads, distance to streams, lithology and normalized difference vegetation index (NDVI) were derived from the spatial database. Subsequently, using the mentioned factors and the three models, groundwater spring potential values were calculated and the results were plotted in ArcGIS 10.0. Finally, the area under the curve was used to validate groundwater spring potential maps. The results showed that the IOE model, with the highest success rate of 0.9126 and the highest prediction rate of 0.9051, showed the preferable performance in this study. The results of this study may be helpful for planners and engineers in groundwater resource management and other similar watersheds.  相似文献   

20.
基于RS与GIS技术的泸定县植被空间分布分析   总被引:2,自引:0,他引:2  
杨晏立  何政伟  管磊  张雪峰 《测绘工程》2010,19(5):49-52,56
以四川省泸定县为分析研究区域,综合运用遥感图像处理技术与GIS空间分析技术,用ETM+遥感影像获取归一化植被指数(NDVI)信息并反演植被覆盖度,用地形图等高线生成数字高程模型(DEM)并提取地形因子。借助叠合分析法,讨论植被覆盖度与海拔高度、坡度、坡度变率、坡向、坡向变率5种地形因子的空间关系,得到泸定县关于地形因子的各等级植被空间分布特征。分析对地植物学中高山峡谷地区植被的地形格局分布规律研究与生态环境的评价与改良都具有重要的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号