首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A funnel, which is notable for its fundamental role in visibility algorithms, is defined as a polygon that has exactly three convex vertices, two of which are connected by a boundary edge. In this paper we investigate the visibility graph of a funnel which we call an F-graph.We first present two characterizations of an F-graph, one of whose sufficiency proof itself is a linear time Real RAM algorithm for drawing a funnel on the plane that corresponds to an F-graph. We next give a linear-time algorithm for recognizing an F-graph. When the algorithm recognizes an F-graph, it also reports one of the Hamiltonian cycles defining the boundary of its corresponding funnel. This recognition algorithm takes linear time even on a RAM.We finally show that an F-graph is weakly triangulated and therefore perfect, which agrees with the fact that perfect graphs are related to geometric structures.This work was supported in part by the Korea Science and Engineering Foundation under Grant 91-01-01.  相似文献   

2.
An optimal visibility graph algorithm for triangulated simple polygons   总被引:2,自引:0,他引:2  
LetP be a triangulated simple polygon withn sides. The visibility graph ofP has an edge between every pair of polygon vertices that can be connected by an open segment in the interior ofP. We describe an algorithm that finds the visibility graph ofP inO(m) time, wherem is the number of edges in the visibility graph. Becausem can be as small asO(n), the algorithm improves on the more general visibility algorithms of Asanoet al. [AAGHI] and Welzl [W], which take (n 2) time, and on Suri'sO(m logn) visibility graph algorithm for simple polygons [S].This work was supported in part by a U.S. Army Research Office fellowship under agreement DAAG29-83-G-0020.  相似文献   

3.
Given a set S of n disjoint convex polygons {Pi∣1?i?n} in a plane, each with ki vertices, the transversal problem is to determine whether there exists a straight line that goes through every polygon in S. We show that the transversal problem can be solved in O(N+nlogn) time, where N=∑i=1nki is the total number of vertices of the polygons.  相似文献   

4.
AnOE¦log2 n) algorithm is presented to construct the visibility graph for a collection ofn nonintersecting line segments, where ¦E¦ is the number of edges in the visibility graph. This algorithm is much faster than theO(n 2)-time andO(n 2)-space algorithms by Asanoet al., and by Welzl, on sparse visibility graphs. Thus we partially resolve an open problem raised by Welzl. Further, our algorithm uses onlyO(n) working storage.  相似文献   

5.
Consider a collection of disjoint polygons in the plane containing a total ofn edges. We show how to build, inO(n 2) time and space, a data structure from which inO(n) time we can compute the visibility polygon of a given point with respect to the polygon collection. As an application of this structure, the visibility graph of the given polygons can be constructed inO(n 2) time and space. This implies that the shortest path that connects two points in the plane and avoids the polygons in our collection can be computed inO(n 2) time, improving earlierO(n 2 logn) results.  相似文献   

6.
Given a triangulation of a simple polygonP, we present linear-time algorithms for solving a collection of problems concerning shortest paths and visibility withinP. These problems include calculation of the collection of all shortest paths insideP from a given source vertexS to all the other vertices ofP, calculation of the subpolygon ofP consisting of points that are visible from a given segment withinP, preprocessingP for fast "ray shooting" queries, and several related problems.Work on this paper by this author has been supported by Office of Naval Research Grant N00014-82-K-0381, National Science Foundation Grant No. NSF-DCR-83-20085, and by grants from the Digital Equipment Corporation, the IBM Corporation, and from the U.S.-Israel Binational Science Foundation.Work on this paper by this author has been supported by National Science Foundation Grant DCR-86-05962.  相似文献   

7.
In 1986, Keil provided an O(n2) time algorithm for the problem of covering monotone orthogonal polygons with the minimum number of r-star-shaped orthogonal polygons. This was later improved to O(n) time and space by Gewali et al. in [L. Gewali, M. Keil, S.C. Ntafos, On covering orthogonal polygons with star-shaped polygons, Information Sciences 65 (1992) 45-63]. In this paper we simplify the latter algorithm—we show that with a little modification, the first step Sweep1 of the discussed algorithm—which computes the top ceilings of horizontal grid segments—can be omitted.In addition, for the minimum orthogonal guard problem in the considered class of polygons, our approach provides a linear time algorithm which uses O(k) additional space, where k is the size of the optimal solution—the algorithm in [L. Gewali, M. Keil, S.C. Ntafos, On covering orthogonal polygons with star-shaped polygons, Information Sciences 65 (1992) 45-63] uses both O(n) time and O(n) additional space.  相似文献   

8.
9.
Every orthogonal polygon can be illuminated by ⌊n/4⌋ lights situated in the vertices of the polygon. In this paper we improve this bound for pyramids, showing that ⌈n/6⌉ guards situated in vertices are always sufficient and sometimes necessary for watching any pyramid of n vertices. Our proof leads to a linear time algorithm for placing those guards.  相似文献   

10.
求凸多边形直径是计算几何中的一个基本问题,在Preparata-Shamos算法的基础上,提出了采用动态规划和二分查找的算法,不需要对凸多边形进行预处理,使整个算法的时间复杂度降低到O(n)级别。对算法实现的理论分析结果进行了验证,实验结果表明算法具有较高效率。  相似文献   

11.
Given a simple polygon PP of nn vertices, the watchman route problem   asks for a shortest (closed) route inside PP such that each point in the interior of PP can be seen from at least one point along the route. In this paper, we present a simple, linear-time algorithm for computing a watchman route of length at most two times that of the shortest watchman route. The best known algorithm for computing a shortest watchman route takes O(n4logn)O(n4logn) time, which is too complicated to be suitable in practice.  相似文献   

12.
This paper considers the problem of investigating the spherical regions owned by the maximum number of spherical polygons. We present a practical O(n(v+I)) time algorithm for finding the approximating centroids for the maximum intersection of spherical polygons, where n, v, and I are, respectively, the numbers of polygons, all vertices, and intersection points. In order to elude topological errors and handle geometric degeneracies, our algorithm takes the approach of edge-based partitioning of the sphere. Furthermore, the numerical complexity is avoided since the algorithm is completely spherical.  相似文献   

13.
Given a set S of n disjoint convex polygons {Pi∣1?i?n} in a plane, each with ki vertices, the transversal problem is to find, if there exists one, a straight line that goes through every polygon in S. We show that the transversal problem can be solved in O(N+nlogn) time, where N=∑i=1nki is the total number of vertices of the polygons.  相似文献   

14.
A frequently used algorithm for finding the convex hull of a simple polygon in linear running time has been recently shown to fail in some cases. Due to its simplicity the algorithm is, nevertheless, attractive. In this paper it is shown that the algorithm does in fact work for a family of simple polygons known as weakly externally visible polygons. Some application areas where such polygons occur are briefly discussed. In addition, it is shown that with a trivial modification the algorithm can be used to internally and externally triangulate certain classes of polygons in 0(n) time.  相似文献   

15.
To computer circular visibility inside a simple polygon, circular arcs that emanate from a given interior point are classified with respect to the edges of the polygon they first intersect. Representing these sets of circular arcs by their centers results in a planar partition called the circular visibility diagram. AnO(n) algorithm is given for constructing the circular visibility diagram for a simple polygon withn vertices.  相似文献   

16.
17.
A very simple, linear-running-time algorithm is presented for solving the hidden-line problem for star-shaped polygons. The algorithm first decomposes the visibility regions into edge-visible polygons and then solves the hidden-line problem for these simpler polygons. In addition to simplicity the algorithm possesses the virtue of affording a very easy proof of correctness. Some applications where this problem arises are mentioned.  相似文献   

18.
Let P = (p1, p2,…,pn) be a monotone polygon whose vertices are specified in terms of cartesian coordinates in order. A new simple two-step procedure is presented for triangulating P, without the addition of new vertices, in O(n) time. Unlike the previous algorithm no specialized code is needed since the new approach uses well-known existing algorithms for first decomposing P into edge-visible polygons and subsequently triangulating these.  相似文献   

19.
In this paper we give efficient parallel algorithms for solving a number of visibility and shortest-path problems for simple polygons. Our algorithms all run inO(logn) time and are based on the use of a new data structure for implicitly representing all shortest paths in a simple polygonP, which we call thestratified decomposition tree. We use this approach to derive efficient parallel methods for computing the visibility ofP from an edge, constructing the visibility graph of the vertices ofP (using an output-sensitive number of processors), constructing the shortest-path tree from a vertex ofP, and determining all-farthest neighbors for the vertices inP. The computational model we use is the CREW PRAM.This research was announced in preliminary form in theProceedings of the 6th ACM Symposium on Computational Geometry, 1990, pp. 73–82. The research of Michael T. Goodrich was supported by the National Science Foundation under Grants CCR-8810568 and CCR-9003299, and by the NSF and DARPA under Grant CCR-8908092.  相似文献   

20.
Given a set S of line segments in the plane, its visibility graph GS is the undirected graph which has the endpoints of the line segments in S as nodes and in which two nodes (points) are adjacent whenever they ‘see’ each other (the line segments in S are regarded as nontransparent obstacles). It is shown that GS can be constructed in O(n2) time and space for a set S of n nonintersecting line segments. As an immediate implication, the shortest path between two points in the plane avoiding a set of n nonintersecting line segments can be computed in O(n2) time and space  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号