共查询到20条相似文献,搜索用时 31 毫秒
1.
A Bayesian Method for the Induction of Probabilistic Networks from Data 总被引:108,自引:3,他引:108
This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction of probabilistic expert systems. We extend the basic method to handle missing data and hidden (latent) variables. We show how to perform probabilistic inference by averaging over the inferences of multiple belief networks. Results are presented of a preliminary evaluation of an algorithm for constructing a belief network from a database of cases. Finally, we relate the methods in this paper to previous work, and we discuss open problems. 相似文献
2.
余丽 《计算机与数字工程》2007,35(7):16-17
聚类分析根据类对象划分为Q型聚类和R型聚类,基于贝叶斯方法的Q型聚类算法,详细说明该算法的基本思想和具体实现过程.实验结果表明算法的可行性,该算法对于数据挖掘具有一定的参考价值. 相似文献
3.
Bayesian Networks for Data Mining 总被引:80,自引:0,他引:80
David Heckerman 《Data mining and knowledge discovery》1997,1(1):79-119
A Bayesian network is a graphical model that encodesprobabilistic relationships among variables of interest. When used inconjunction with statistical techniques, the graphical model hasseveral advantages for data modeling. One, because the model encodesdependencies among all variables, it readily handles situations wheresome data entries are missing. Two, a Bayesian network can be used tolearn causal relationships, and hence can be used to gain understanding about a problem domain and to predict the consequencesof intervention. Three, because the model has both a causal andprobabilistic semantics, it is an ideal representation for combiningprior knowledge (which often comes in causal form) and data. Four,Bayesian statistical methods in conjunction with Bayesian networksoffer an efficient and principled approach for avoiding theoverfitting of data. In this paper, we discuss methods for constructing Bayesian networks from prior knowledge and summarizeBayesian statistical methods for using data to improve these models.With regard to the latter task, we describe methods for learning boththe parameters and structure of a Bayesian network, includingtechniques for learning with incomplete data. In addition, we relateBayesian-network methods for learning to techniques for supervised andunsupervised learning. We illustrate the graphical-modeling approachusing a real-world case study. 相似文献
4.
以EM算法为基础,在给定贝叶斯网络结构情况下。研究分析了Voting EM算法并利用该算法对防洪决策贝叶斯网络进行在线参数学习,将该算法与EM算法的学习结果进行了比较分析,结果表明Voting EM算法不但能够进行在线参数学习,而且也具有较高的学习精度. 相似文献
5.
Classification of Multivariate Time Series and Structured Data Using Constructive Induction 总被引:2,自引:0,他引:2
We present a method of constructive induction aimed at learning tasks involving multivariate time series data. Using metafeatures, the scope of attribute-value learning is expanded to domains with instances that have some kind of recurring substructure, such as strokes in handwriting recognition, or local maxima in time series data. The types of substructures are defined by the user, but are extracted automatically and are used to construct attributes.Metafeatures are applied to two real domains: sign language recognition and ECG classification. Using metafeatures we are able to generate classifiers that are either comprehensible or accurate, producing results that are comparable to hand-crafted preprocessing and comparable to human experts. 相似文献
6.
杜一平 《计算机光盘软件与应用》2011,(14)
贝叶斯网络是用来描述不确定变量之间潜在依赖关系的图形模型。从完备数据集上学习贝叶斯网络是一个研究热点。分析了完备数据集上构建贝叶斯网的常见理论方法。 相似文献
7.
The available concept-learners only partially fulfill the needs imposed by the learning apprentice generation of learners. We present a novel approach to interactive concept-learning and constructive induction that better fits the requirements imposed by the learning apprentice paradigm. The approach is incorporated in the system Clint-Cia, which integrates several user-friendly features into one working whole: it is interactive, generates examples, shifts its bias, identifies concepts in the limit, copes with indirect relevance, recovers from errors, performs constructive induction and invents new concepts by analogy to previously learned ones. 相似文献
8.
Bayesian Clustering by Dynamics 总被引:4,自引:0,他引:4
This paper introduces a Bayesian method for clustering dynamic processes. The method models dynamics as Markov chains and then applies an agglomerative clustering procedure to discover the most probable set of clusters capturing different dynamics. To increase efficiency, the method uses an entropy-based heuristic search strategy. A controlled experiment suggests that the method is very accurate when applied to artificial time series in a broad range of conditions and, when applied to clustering sensor data from mobile robots, it produces clusters that are meaningful in the domain of application. 相似文献
9.
Data Mining by Means of Binary Representation: A Model for Similarity and Clustering 总被引:1,自引:0,他引:1
In this paper we outline a new method for clustering that is based on a binary representation of data records. The binary database relates each entity to all possible attribute values (domain) that entity may assume. The resulting binary matrix allows for similarity and clustering calculation by using the positive (1 bits) of the entity vector. We formulate two indexes: Pair Similarity Index (PSI) to measure similarity between two entities and Group Similarity Index (GSI) to measure similarity within a group of entities. A threshold factor for each attribute domain is defined that is dependent on the domain but independent of the number of entities in the group. The similarity measure provides simplicity of storage and efficiency of calculation. A comparison of our similarity index to other indexes is made. Experiments with sample data indicate a 48% improvement of group similarity over standard methods pointing to the potential and merit of the binary approach to clustering and data mining. 相似文献
10.
共同进化算法是一种新的进化算法,由于它采用了解空间分离编码,能有效地克服一般进化算法中固有的早熟收敛问题。该文针对数据聚类问题——当前数据挖掘与探查性数据分析中的一个重要课题——将数据聚类问题抽象成为一个赋值图的分割问题,应用共同进化算法来加以解决,使得聚类的结果不必依赖于初始聚类中心,并对该算法的性能加以分析。将该算法与一般的遗传算法相比较,通过实验证明了该算法的优越性能。 相似文献
11.
在数据挖掘过程中,缺损数据是不可避免的,因此,数据预处理是必不可少的前提工作。在传统的数据预处理工作中,朴素贝叶斯算法是最常用的缺损数据修补算法。然而,现实世界中的数据经常不满足其属性独立性假设,分类结果不令人满意。文章基于聚类分析思想,提出了一种改进的贝叶斯算法。对大量数据的计算结果表明此方法的合理性、可信度优于朴素贝叶斯算法。 相似文献
12.
13.
不平衡数据集类别分布严重倾斜,传统的聚类算法由于以提高整体学习性能为目标,往往偏向于聚集多数类,而忽视更有价值的稀有类.本文提出一种基于迭代的特征加权聚类算法,根据当前聚类后簇的特点以及特征重要性度量函数确定特征权值,利用所得权值进行下一轮聚类,直到权值稳定后结束迭代.在多个UCI不平衡数据集上的实验效果表明,本文算法能够较好地识别出重要特征并提高它们的权重,避免聚类算法过度偏向多数类,有效地提高了聚类性能. 相似文献
14.
15.
Bayesian networks (BNs) have gained increasing attention in recent years. One key issue in Bayesian networks is parameter learning. When training data is incomplete or sparse or when multiple hidden nodes exist, learning parameters in Bayesian networks becomes extremely difficult. Under these circumstances, the learning algorithms are required to operate in a high-dimensional search space and they could easily get trapped among copious local maxima. This paper presents a learning algorithm to incorporate domain knowledge into the learning to regularize the otherwise ill-posed problem, to limit the search space, and to avoid local optima. Unlike the conventional approaches that typically exploit the quantitative domain knowledge such as prior probability distribution, our method systematically incorporates qualitative constraints on some of the parameters into the learning process. Specifically, the problem is formulated as a constrained optimization problem, where an objective function is defined as a combination of the likelihood function and penalty functions constructed from the qualitative domain knowledge. Then, a gradient-descent procedure is systematically integrated with the E-step and M-step of the EM algorithm, to estimate the parameters iteratively until it converges. The experiments with both synthetic data and real data for facial action recognition show our algorithm improves the accuracy of the learned BN parameters significantly over the conventional EM algorithm. 相似文献
16.
随着信息技术的不断发展,数据挖掘在我们的工作和生活中的应用也越来越广泛,目前聚类算法在数据挖掘中则是一个热点研究领域。本文深入研究了现阶段比较成熟的几种聚类算法,总结了这些算法的优缺点以及适用范围,提出用来评价聚类算法性能优劣的指标,也是今后聚类算法研究的出发点。 相似文献
17.
基于一趟聚类的不平衡数据下抽样算法 总被引:1,自引:0,他引:1
抽样是处理不平衡数据集的一种常用方法,其主要思想是改变类别的分布,缩小稀有类与多数类的分布比例差距.提出一种基于一趟聚类的下抽样方法,根据聚类后簇的特征与数据倾斜程度确定抽样比例,按照每个簇的抽样比例对该簇进行抽样,密度大的簇少抽,密度小的簇多抽或全抽.在压缩数据集的同时,保证了少数类的数量.实验结果表明,本文提出的抽样方法使不平衡数据样本具有较高的代表性,聚类与分类性能得到了提高. 相似文献
18.
19.
基于单元区域的高维数据聚类算法 总被引:1,自引:0,他引:1
高维数据空间维数较高,数据点分布稀疏、密度平均,从中发现数据聚类比较困难,而用基于距离的方法进行高维数据聚类,维数的增多会使得计算对象间距离的时间开销增大. CAHD(clustering algorithm of high-dimensional data)算法首先采用双向搜索策略在指定的n维空间或其子空间上发现数据点密集的单元区域,然后采用逐位与的方法为这些密集单元区域进行聚类分析.双向搜索策略能够有效地减少搜索空间,从而提高算法效率,同时,聚类密集单元区域只用到逐位与和位移两种机器指令,使得算法效率得到进一步提高.算法CAHD可以有效地处理高维数据的聚类问题.基于数据集的实验表明,算法具有很好的有效性. 相似文献
20.
在分析和比较k平均分区算法和层次凝聚算法的基础上,提出了一种新的改进算法(NQ算法)。并以贵州民族学院近四年学生试卷数据作为测试数据,对NQ算法与k平均分区算法和层次凝聚算法进行了性能对比,实践证明:NQ算法是有效、可靠和快速的。 相似文献