首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
线性流形上D对称矩阵反问题的最小二乘解   总被引:3,自引:0,他引:3  
本研究了线性流形上D对称矩阵反问的最小二乘解及其逼近问题,给出了最小二乘解的一般表达式,并就该问题的特殊情况-矩阵反问题,获得了有解的充分必要条件,并在有解的条件下得到了解的一段表达式。  相似文献   

2.
线性流形上Hermite-广义反Hamilton矩阵反问题的最小二乘解   总被引:8,自引:0,他引:8  
张忠志  胡锡炎  张磊 《计算数学》2003,25(2):209-218
1.引言 令Rn×m表示所有n×m实矩阵集合,Cn×m表示所有n×m复矩阵集合,Cn=Cn×1,HCn×n表示所有n阶Hermite矩阵集合,UCn×n表示所有n阶酉矩阵集合,AHCn×n表示所有n阶反Hermite矩阵集合,R(A)表示A的列空间,N(A)表示A的零空间,A+表示A的Moore—Penrose广义逆,A*B表示A与B的Hadamard积,rank(A)表示矩阵A的秩.tr(A)表示矩阵A的迹.矩阵A,B的内积定义为(A,B)=tr(BHA),A,B∈Cn×m,由此内积诱导的范数为||A||=√(A,A)=[tr(AHA)]1/2,则此范数为Frobenius范数,并且Cn×m构成一个完备的内积空间,In表示n阶单位阵,i=√-1,记OASRn×n表示n×n阶正交反对称矩阵的全体,即  相似文献   

3.
1引言令R~(n×m)、OR~(n×n)、SR~(n×n)(SR_0~(n×n))分别表示所有n×m阶实矩阵、n阶实正交阵、n阶实对称矩阵(实对称半正定阵)的全体,A~ 表示A的Moore-Penrose广义逆,I_k表示k阶单位矩阵,S_k表示k阶反序单位矩阵。R(A)表示A的列空间,N(A)表示A的零空间,rank(A)表示矩阵A的秩。对A=(a_(ij)),B=(b_(ij))∈R~(n×m),A*B表示A与  相似文献   

4.
肖庆丰 《数学杂志》2014,34(1):72-78
本文研究了Hermitian自反矩阵反问题的最小二乘解及其最佳逼近.利用矩阵的奇异值分解理论,获得了最小二乘解的表达式.同时对于最小二乘解的解集合,得到了最佳逼近解.  相似文献   

5.
双反对称矩阵反问题的最小二乘解   总被引:21,自引:0,他引:21  
1 引 言Rn×m表示所有n×m阶实矩阵集合,Rrn×m表示Rn×m中秩为r的子集;ORn×m表示所有n阶正交阵的集合;A+表示A的Moore-Penrose广义逆;Iκ表示κ阶单位阵;||·||表示Frobenius范数;ASRn×m表示n阶实反对称阵的全体;A*B表示A与B的Hadamard乘  相似文献   

6.
广义次对称矩阵反问题的最小二乘解   总被引:1,自引:0,他引:1  
讨论了广义次对称矩阵反问题的最小二乘解,得到了解的一般表达式,并就该问题的特殊情形:矩阵反问题,得到了可解的充分必要条件及解的通式.此外,证明了最佳逼近问题解的存在唯一性,并给出了其解的具体表达式.  相似文献   

7.
该文讨论了线性流形上矩阵方程AX=B反对称正交对称反问题的最小二乘解及其最佳逼近问题.给出了最小二乘问题解集合的表达式,得到了给定矩阵的最佳逼近问题的解,最后给出计算任意矩阵的最佳逼近解的数值方法及算例.  相似文献   

8.
本文主要研究极小残差问题‖(A1XB1+C1YD1A2XB2+C2YD2)-(M1M2)‖=min关于X对称-Y反对称解的迭代算法.本文首先给出等价于极小残差问题的规范方程,然后,提出求解此规范方程的对称-反对称解的迭代算法.在不考虑舍入误差的情况下,任取一个初始的对称-反对称矩阵对(X0,Y0),该算法都可以在有限步内求得该极小残差问题的对称-反对称解.最后讨论该问题的极小范数对称-反对称解.  相似文献   

9.
一类双对称矩阵反问题的最小二乘解   总被引:55,自引:0,他引:55  
1.问题的提出近年来,对于矩阵反问题AX=B的研究已取得了一系列的结果[1],获得了解存在的条件,但由于实际问题中X,B由实验给出,很难保证满足解存在的条件,因此研究问题的最小二乘解是有实际意义的.本文就结构设计中用到的一类双对称矩阵的最小二乘问题进行探讨.令R~(n×m)表示所有n×m阶实矩阵集合,R~n=R~(n×1) 表示其中秩为r的子集;OR~(n×n) 表示所有n阶正交阵之集;A~( )表示矩阵A的Moore-Penrose广义逆;I_k表示k阶单位阵;||·||表示Frobenius范数;表示SR~(n…  相似文献   

10.
广义中心对称矩阵反问题的最小二乘解   总被引:1,自引:0,他引:1  
讨论了广义中心对称矩阵反问题的最小二乘解,得到了解的一般表达式,并就该问题的特殊情形:矩阵反问题,得到了可解的充分必要条件及解的通式.此外,证明了最佳逼近问题解的存在惟一性,并给出了其解的具体表达式.  相似文献   

11.
基于矩阵方程LS+SL^T=[p,q]求解对称矩阵S,得到了唯一解的充要条件和解的递推计算式,进一步研究了逆矩阵S-1的求法,数值算例说明了递推计算式的正确性.  相似文献   

12.
13.
Let X,Y be Banach spaces and M a linear manifold in X×Y={{x,y}∣x∈X,y∈Y}. The central problem which motivates many of the concepts and results of this paper is the problem of characterization and construction of all extremal solutions of a linear inclusion yM(x). First of all, concept of metric operator parts and metric generalized inverses for linear manifolds are introduced and investigated, and then, characterizations of the set of all extremal or least extremal solutions in terms of metric operator parts and metric generalized inverses of linear manifolds are given by the methods of geometry of Banach spaces. The principal tool in this paper is the generalized orthogonal decomposition theorem in Banach spaces.  相似文献   

14.
§ 1 IntroductionLetRn×mdenotetherealn×mmatrixspace ,Rn×mr itssubsetwhoseelementshaverankr ,ORn×nthesetofalln×northogonalmatrices,SRn×n(SRn×n≥ ,SRn×n>)thesetofalln×nrealsymmetric (symmetricpositivesemidefinite ,positivedefinite)matrices.ThenotationA>0 (≥ 0 ,<0 ,≤ 0 )m…  相似文献   

15.
This paper focuses on L-structured quaternion matrices. L-structured real matrices, conditions for the existence of solutions and the general solution of linear matrix equations were studied in the paper [Magnus JR. L-structured matrices and linear matrix equations, Linear Multilinear Algebra 1983;14:67–88]. In this paper, we present a theoretical study extending L-structured real matrices to L-structured quaternion matrices, and introduce some L-structured quaternion matrices. Based on them, we then discuss their applications in quaternion matrix equations.  相似文献   

16.
An n × n real matrix A = (aij)n × n is called bi‐symmetric matrix if A is both symmetric and per‐symmetric, that is, aij = aji and aij = an+1?1,n+1?i (i, j = 1, 2,..., n). This paper is mainly concerned with finding the least‐squares bi‐symmetric solutions of matrix inverse problem AX = B with a submatrix constraint, where X and B are given matrices of suitable sizes. Moreover, in the corresponding solution set, the analytical expression of the optimal approximation solution to a given matrix A* is derived. A direct method for finding the optimal approximation solution is described in detail, and three numerical examples are provided to show the validity of our algorithm. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
An n×n real matrix P is said to be a symmetric orthogonal matrix if P = P?1 = PT. An n × n real matrix Y is called a generalized centro‐symmetric with respect to P, if Y = PYP. It is obvious that every matrix is also a generalized centro‐symmetric matrix with respect to I. In this work by extending the conjugate gradient approach, two iterative methods are proposed for solving the linear matrix equation and the minimum Frobenius norm residual problem over the generalized centro‐symmetric Y, respectively. By the first (second) algorithm for any initial generalized centro‐symmetric matrix, a generalized centro‐symmetric solution (least squares generalized centro‐symmetric solution) can be obtained within a finite number of iterations in the absence of round‐off errors, and the least Frobenius norm generalized centro‐symmetric solution (the minimal Frobenius norm least squares generalized centro‐symmetric solution) can be derived by choosing a special kind of initial generalized centro‐symmetric matrices. We also obtain the optimal approximation generalized centro‐symmetric solution to a given generalized centro‐symmetric matrix Y0 in the solution set of the matrix equation (minimum Frobenius norm residual problem). Finally, some numerical examples are presented to support the theoretical results of this paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The consistent conditions and the general expressions about the Hermitian solutions of the linear matrix equations AXB=C and (AX, XB)=(C, D) are studied in depth, where A, B, C and D are given matrices of suitable sizes. The Hermitian minimum F‐norm solutions are obtained for the matrix equations AXB=C and (AX, XB)=(C, D) by Moore–Penrose generalized inverse, respectively. For both matrix equations, we design iterative methods according to the fundamental idea of the classical conjugate direction method for the standard system of linear equations. Numerical results show that these iterative methods are feasible and effective in actual computations of the solutions of the above‐mentioned two matrix equations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
线性流形上对称正交反对称矩阵反问题的最小二乘解   总被引:1,自引:0,他引:1  
设P是n阶对称正交矩阵,如果n阶矩阵A满足AT=A和(PA)T=-PA,则称A为对称正交反对称矩阵,所有n阶对称正交反对称矩阵的全体记为SARnp.令S={A∈SARnp f(A)=‖AX-B‖=m in,X,B〗∈Rn×m本文讨论了下面两个问题问题Ⅰ给定C∈Rn×p,D∈Rp×p,求A∈S使得CTAC=D问题Ⅱ已知A~∈Rn×n,求A∧∈SE使得‖A~-A∧‖=m inA∈SE‖A~-A‖其中SE是问题Ⅰ的解集合.文中给出了问题Ⅰ有解的充要条件及其通解表达式.进而,指出了集合SE非空时,问题Ⅱ存在唯一解,并给出了解的表达式,从而得到了求解A∧的数值算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号