首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
应用密度泛函理论,在6-311水平上研究煤表面与氧的吸附作用,比较煤吸附5个氧分子,其表面与氧分子化学键的变化情况,吸附后氧分子的键变长,但不断裂,煤表面的变化很小,证明煤表面吸附5个氧分子是物理吸附,根据优化后的几何结构,证明还是多层吸附.其中侧链吸附的氧分子键长变化最大,由1.2582 A变为1.3244 A,说明侧链吸附的氧分子最活泼.从电荷集居数分析可知,原子中电子转移的多少与化学键的变化成正比,转移越多,化学键变化越大.煤表面与5个氧分子组成的吸附态中,氧分子的振动频率变小,计算其吸附能为409.68 kJ/mol.  相似文献   

2.
煤炭自燃是煤矿的主要灾害之一。不仅烧毁宝贵资源,还严重危害井下工作人员的安全与健康。CO2气体灭火可以应用于矿井的防灭火工作。煤矿井下的气体是多种气体的混合物,煤对很多种气体具有吸附特性。运用量子化学理论高斯03软件包对二氧化碳气体在煤表面吸附时,甲烷气体对其吸附能力的影响进行研究。结果表明,当煤表面分别吸附1个和2个CO2分子时,有1个CH4分子存在会促进煤表面吸附CO2分子。但当CO2分子的个数大于2个时,有1个CH4分子存在就会抑制煤表面吸附CO2分子。因此,CH4分子对煤表面吸附CO2分子是有影响的。甲烷气体的含量能够影响煤对二氧化碳气体的吸附。  相似文献   

3.
为了揭示阻化剂抑制煤炭自燃的机理,提高阻化效果。采用Gaussian03软件包,对含CaCl_2阻化剂中的金属Ca~(2+)与煤中含S活性结构形成的配位体及分子前沿轨道、稳定化能、自然键轨道和净电荷布居、自然电子组态进行系统研究。结果表明,金属Ca~(2+)能够与煤中含S活性结构反应形成稳定化能变大,前沿轨道能级能隙差变小,形成二配体、三配体及四配体配合物。而且形成配合物后,含S活性结构对前沿轨道的贡献大大减少,同时轨道能级大幅增加,增加了煤中含S活性结构的稳定性,降低了煤的活性,使煤不易于氧发生反应,可有效预防煤炭自燃。  相似文献   

4.
采用量子化学的密度泛函理论,研究二氧化碳在Fe(111)表面的可能吸附态(M1-M5),计算出稳定的吸附构型和吸附能.结果表明,当CO2的O与表面形成强O-Fe双吸附键(M2,M5)时,吸附能最大,为强化学吸附;形成较弱双吸附键C-Fe及配位键O-Fe(M3)时,吸附能次之;当CO2垂直底物表面吸附(M4)时,氧原子只能与Fe原子形成单键,吸附力很弱,为弱物理吸附;在M1吸附模式中,CO2分子的C原子吸附在Fe原子上,M1的吸附能也不太大,约为1.87 ev,属于弱化学吸附.Mullik-en电荷计算表明,当吸附分子CO2电荷愈负,与底物的吸附力愈强,与吸附能的计算结果相一致,同时由于电子转移形成CO2x-,导致金属失去电子而易被腐蚀.  相似文献   

5.
NO在Cu-ZSM-5上吸附机理的量化研究   总被引:2,自引:2,他引:2  
采用密度泛函理论(DFT)的B3LYP方法,在LanL2DZ基组下,研究了NO在铜离子交换型沸石分子筛催化剂(Cu-ZSM-5)上的吸附情况。首先优化了吸附模型的几何构型参数,然后通过分析Mulliken电荷分布和轨道布居数,进一步探讨了NO在Cu-ZSM-5上吸附成键和活化机理。结果表明:与非负载型Cu相比,Cu-ZSM-5对NO的吸附和活化性能均有提高(其中,负载型Cu~0对N-O键的拉长效应以及吸附能分别为:E=146.2~175.5 kJ·ml~(-1),r=0.065~0.088 A;负载型Cu~+对N-O键的拉长效应以及吸附能分别为:E=105.8~120.8 kJ·mol~(-1),r=0.006~0.012 A)。轨道分析还表明:Cu的3d和4s电子通过dsp杂化参与π~*反馈而导致NO的活化,同时Cu的σ价电子与NO的5σ电子排斥作用的减小是吸附能增加的主要原因。通过相关系列的量化研究,将为氮氧化物NO_x(NO+NO_2)的去除寻找合适的有应用价值的高效催化剂及最佳的去除条件提供理论依据。  相似文献   

6.
本文采用从头计算密度泛函平面波赝势方法,系统研究了氧气在LaMnO3(001)表面吸附过程。研究结果表明:整个过程属于化学吸附;Pauling、Griffiths以及双中心吸附模式为较优吸附模式;吸附过程中形成了O2-;吸附后表面Mn的化合价均有不同程度的升高,其中Griffiths吸附模式下Mn的化合价变化最多,分别为:Mn3+0.87、Mn3+0.85,有利于催化剂活性组分Pd0-Pd2的转化。  相似文献   

7.
CO_2是导致全球气候恶化的温室气体。控制CO_2的排放和对CO_2的有效封存是世界各国学者研究的热点。CO_2的地质埋存是一种极具前景的碳埋存技术。大量的煤岩采空区为CO_2的地质埋存提供了广阔的空间。运用量子化学理论高斯03软件包对CO_2、CO气体与煤特征结构的吸附能力影响进行研究。结果表明,煤特征结构易于与多个CO_2分子发生物理吸附。当煤特征结构分别吸附1个C02分子、2个C02分子和3个C02时,放入1个CO分子会促进煤特征结构吸附CO_2分子。但当煤特征结构吸附CO_2分子的个数大于3个时,放入1个CO分子会抑制煤特征结构吸附CO_2分子。  相似文献   

8.
采用量子力学的密度泛函理论计算电路板生产图形电镀后Cu(110)的表面和吸附了Cu2+、Sn2+与Pb2+及其相应原子的Cu(110)c(2×1)表面的原子结构,得各种参数.再计算上述离子或原子在Cu(110)表面的穴位位置吸附后的吸附能量,并求出吸附后各吸附体系的轨道布居数和态密度分析.结果表明:比吸附原子,3种离子...  相似文献   

9.
应用傅立叶变换红外光谱仪研究煤在氧化自燃中不同温度所生成的气体产物.在30%~100%左右有水和二氧化碳气体析出,温度升至105℃~150%左右时,有一氧化碳生成.采用密度泛函B3LYP法,在6-311G基组水平上研究煤与氧发生自燃反应生成水和一氧化碳的反应体系,对反应势能面上各驻点的几何构型全优化,用频率分析法和内禀反应坐标(IRC)法验证过渡态.计算结果表明,煤自燃生成一氧化碳的反应是氧分子攻击苯环侧链上丙基末端的碳原子,使丙基生成带醛的基团(-CH2-CH2-CO-H)和水,而带醛的基团继续分解生成一氧化碳.由反应活化能可知,生成水和一氧化碳的反应是一个自发式反应.  相似文献   

10.
采用密度泛函理论研究CO在Pt(111)表面的吸附位和活化机理。研究采用三维周期结构取代以往的团簇模型,消除金属表面结构选择对计算结果的影响。结果表明,CO在不同的表面活性位吸附后C-O键有不同程度的增长,即C-O键均不同程度地削弱,从而活化CO分子。经比较吸附能、化学键参数和CO重叠布居数,发现在顶位、桥位、hcp空穴位和fcc空穴位4个吸附位中,fcc空穴位是CO的最佳活性位。通过考察原子轨道电子变化,分析CO在Pt(111)表面的吸附活化机理,得到了CO分子在Pt(111)表面吸附的σ/π键作用机理。  相似文献   

11.
当前不少研究均得出煤层赋存原生CO气体的结论,但是未考虑钻孔施工过程中产生CO后被煤体吸附的可能。为探究西北地区易自燃煤层是否存在原生CO的问题,采用原始煤层原位钻孔探测方法进行原生CO探测试验。在未受采动影响的实体煤区域沿巷帮一字排开布置3个测试钻孔,钻孔密封后采用高纯N2置换密闭气室内气体,采用专用抽气泵抽取钻孔内气体,消除原位探测钻孔施工过程中煤体氧化产生CO对试验结果的影响。在分析煤层原生CO来源可能性及其涌出理论的基础上,探讨了密闭钻孔内气体浓度随时间变化特征,结果表明:密封后钻孔内O2和CO体积分数随密封时间的延长而迅速降低,12 d后O2体积分数稳定在2%以下;12 d后CO体积分数低于10-12,气相色谱仪未检测到CO气体;钻孔内气体主要为N2。由此推断,待测煤层中无原生CO气体。N2环境破煤试验和煤样常温恒温氧化试验结果表明,封孔初期检出的CO气体来源于钻孔施工破煤作业。  相似文献   

12.
为了验证煤中水含量对瓦斯的吸附与解吸特性的影响,分别对煤样在不同平衡压力条件、不同水含量状态下的瓦斯吸附与解吸进行了实验。实验结果表明,煤对瓦斯的吸附能力随着煤中水含量的增加而减小,实际应用中可近似用水含量对煤吸附瓦斯影响系数进行修正;煤中水含量越大,瓦斯的解吸就越慢,残存瓦斯量越大,水充填在煤样空隙中后对瓦斯的吸附和解吸均有一定抑制作用。  相似文献   

13.
煤自燃是矿井的主要灾害之一,煤自然发火实验台的建造为煤自然发火的实验模拟提供了有效的解决方案;实验中温度数据的准确、可靠测量是目前亟待解决的技术问题。对煤自然发火实验台的温度数据采用改进的一致性数据融合算法进行处理,该方法的应用使融合结果有更高的精度,更强的抗干扰能力。  相似文献   

14.
邢震 《工矿自动化》2020,46(3):6-11,20
针对目前采空区瓦斯与煤自燃共同致灾数值模拟仅考虑流体影响、未考虑其他物理场影响的问题,采用Comsol-Multiphysics多场耦合数值模拟软件建立了采空区瓦斯与煤自燃耦合模型,分析工作面采场与采空区瓦斯和O2分布规律,探讨抽采量和进风量对高位抽采巷道瓦斯浓度和采空区底板O2浓度的影响,并综合确定最佳抽采量和进风量。结果表明:随着抽采量的增大,瓦斯抽采浓度先增大后减小,采空区氧化升温带宽度呈正相关增长,综合考虑瓦斯抽采效果与自然发火防治,建议高位抽采巷道最佳抽采量为90m^3/min;随着进风量的增大,高位抽采巷道瓦斯浓度和纯量先增大后减小,采空区进风侧氧化升温带宽度明显增大,最大时达到109.3m,而回风侧氧化升温带宽度变化幅度很小,综合考虑瓦斯抽采效果与自然发火防治,试验工作面最优进风量为1 500m^3/min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号