首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Chloral hydrate (CH) is a commonly found disinfection by-product in water purification, a metabolite of trichloroethylene, and a sedative/hypnotic drug. CH and two of its reported metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), are hepatocarcinogenic in mice. Another metabolite of CH, trichloroethanol (TCE), is also metabolized into TCA, and the enterohepatic circulation (EHC) of TCE maintains a pool of metabolite for the eventual production of TCA. To gain insight on the effects of EHC on the kinetics of CH and on the formation of TCA and DCA, dual cannulated F344 rats were infused with 12, 48, or 192 mg/kg of CH and the blood, bile, urine, and feces were collected over a 48-h period. CH was cleared rapidly (>3000 ml/h/kg) and displayed biphasic elimination kinetics, with the first phase being elimination of the dose and the second phase exhibiting formation rate-limited kinetics relative to its TCE metabolite. The effects of EHC on metabolite kinetics were only significant at the highest dose, resulting in a 44% and 17% decrease in the area under the curve (AUC) of TCA and TCE, respectively. The renal clearance of CH, free TCE (f-TCE), and TCA of 2, 2.7, and 38 ml/h/kg, respectively, indicates an efficient reabsorption mechanism for all of these small chlorinated compounds. DCA was detected at only trace levels (<2 microM) as a metabolite of CH, TCA, or TCE.  相似文献   

2.
Conflicting data have been published related to the formationof dichloroacetate (DCA) from trichloroethylene (TRI), chloralhydrate (CH), or trichloroacetic acid (TCA) in B6C3F1 mice.TCA is usually indicated as the primary metabolic precursorto DCA. Model simulations based on the known pharmacokineticsof TCA and DCA predicted blood concentrations of DCA that were10- to 100-fold lower than previously published reports. BecauseDCA has also been shown to form as an artifact during sampleprocessing, we reevaluated the source of the reported DCA, i.e.,whether it was metabolically derived or formed as an artifact.Male B6C3F1 mice were dosed with TRI, CH, trichloroethanol (TCE),or TCA and metabolic profiles of each were determined. DCA wasnot detected in any of these samples above the assay LOQ of1.9 µM of whole blood. In order to slow the clearanceof DCA, mice were pretreated for 2 weeks with 2 g/liter of DCAin their drinking water. Even under this pretreatment condition,no DCA was detected from a 100 mg/kg iv dose of TCA. Althoughthere is significant uncertainty in the amount of DCA that couldbe generated from TRI or its metabolites, our experimental dataand pharmacokinetic model simulations suggest that DCA is likelyformed as a short-lived intermediate metabolite. However, itsrapid elimination relative to its formation from TCA preventsthe accumulation of measurable amounts of DCA in the blood.  相似文献   

3.
The metabolism of trichloroethylene (TRI) and its metabolites, chloral hydrate (CH), trichloroethanol (free-TCE) and trichloroacetic acid (TCA), were examined in the isolated perfused rat liver, to clarify the role of the liver in the metabolism of TRI. TRI was rapidly converted to TCE and TCA by the perfused liver. TCA was produced from TRI about 2.5 times greater than was total-TCE. CH was metabolized to TCE and TCA immediately. TCA was also a dominant metabolite of CH over total-TCE. TCE(free type) was speedily conjugated by the liver. A portion of TCE was converted to TCA. Less than 10% of these metabolites produced by the liver were excreted into the bile. Most of them appeared in the perfusate.  相似文献   

4.
In order to examine the absorption of trichloroethylene (TRI) and its metabolites from the urinary bladder of dogs, we injected TRI and its metabolites, i.e., chloral hydrate (CH), free trichloroethanol (F-TCE), trichloroacetic acid (TCA) and conjugated trichloroethanol (Conj-TCE), into the urinary bladder of anesthetized dogs, and measured the agents and their respective metabolites in the blood or serum, urine and bile. The percentage of water absorbed from the urinary bladder was 10-20% 2 h after the administration of all substances. The percentage of agents absorbed was 60-70% for the TRI and TCA groups, and 50-60% for the CH, F-TCE and Conj-TCE groups 2 h after administration. The combined urinary and biliary excretion rates of the absorbed materials from the urinary bladder 2 h after administration were 46% for F-TCE, 30% for CH, 6% for Conj-TCE and 0.5-1.0% for TRI and TCA. Urinary re-excretion rates of the total excreted amounts were 65-70% in TRI, CH and F-TCE groups, about 50% in TCA and 99% in Conj-TCE group. It is possible that all of the substances administered, particularly F-TCE, are metabolized to Conj-TCE in the urinary bladder.  相似文献   

5.
Differing rates and extent of trichloroethylene (TCE) metabolism have been implicated as being responsible for varying sensitivities of mice and rats to the hepatocarcinogenic effects of TCE. Recent data indicate that the induction of hepatic tumors in mice may be attributed to the metabolites trichloroacetate (TCA) and/or dichloroacetate (DCA). The present study was directed at determining whether mice and rats varied in (1) the peak blood concentrations, (2) the area under the blood concentration over time curves (AUC) for TCE and metabolites in blood, and (3) the net excretion of TCE to these metabolites in urine in the dose range used in the cancer bioassays of TCE, and to contrast the kinetic parameters observed for TCE-derived TCA and DCA with those obtained following direct administration of TCA and DCA. Blood and urine samples were collected over 72 hr from rats and mice after a single oral dose of TCE of 1.5 to 23 mmol/kg. The AUC values from the blood concentration with time profiles of TCE, TCA, and trichloroethanol (TCOH) were similar for Sprague-Dawley rats and B6C3F1 mice. Likewise, the percentages of initial TCE dose recovered as the urinary metabolites TCA and TCOH were comparable. Nevertheless, the peak blood concentrations of TCE, TCA, and TCOH observed in mice were much greater than those in rats, while the residence time of TCE and metabolites was prolonged in rats relative to that of mice. DCA was detected in the blood of mice but not in rats. The blood concentrations of DCA observed in mice given a carcinogenic dose of TCE (15 mmol/kg) were of the same magnitude as those observed with carcinogenic doses of DCA. In conclusion, the net metabolism of TCE to TCA and TCOH was similar in rats and mice. The initial rates of metabolism of TCE to TCA, however, were much higher in mice, especially as the TCE dose was increased, leading to greater concentrations of TCA and DCA in mice approximated those produced by carcinogenic doses of the chlorinated acetates makes it highly likely that both compounds play a role in the induction of hepatic tumors in mice by TCE.  相似文献   

6.
Determining the key events in the induction of liver cancer in mice by trichloroethylene (TRI) is important in the determination of how risks from this chemical should be treated at low doses. At least two metabolites can contribute to liver cancer in mice, dichloroacetate (DCA) and trichloroacetate (TCA). TCA is produced from metabolism of TRI at systemic concentrations that can clearly contribute to this response. As a peroxisome proliferator and a species-specific carcinogen, TCA may not be important in the induction of liver cancer in humans at the low doses of TRI encountered in the environment. Because DCA is metabolized much more rapidly than TCA, it has not been possible to directly determine whether it is produced at carcinogenic levels. Unlike TCA, DCA is active as a carcinogen in both mice and rats. Its low-dose effects are not associated with peroxisome proliferation. The present study examines whether biomarkers for DCA and TCA can be used to determine if the liver tumor response to TRI seen in mice is completely attributable to TCA or if other metabolites, such as DCA, are involved. Previous work had shown that DCA produces tumors in mice that display a diffuse immunoreactivity to a c-Jun antibody (Santa Cruz Biotechnology, SC-45), whereas TCA-induced tumors do not stain with this antibody. In the present study, we compared the c-Jun phenotype of tumors induced by DCA or TCA alone to those induced when they are given together in various combinations and to those induced by TRI given in an aqueous vehicle. When given in various combinations, DCA and TCA produced a few tumors that were c-Jun+, many that were c-Jun-, but a number with a mixed phenotype that increased with the relative dose of DCA. Sixteen TRI-induced tumors were c-Jun+, 13 were c-Jun-, and 9 had a mixed phenotype. Mutations of the H-ras protooncogene were also examined in DCA-, TCA-, and TRI-induced tumors. The mutation frequency detected in tumors induced by TCA was significantly different from that observed in TRI-induced tumors (0.44 vs 0.21, p < 0.05), whereas that observed in DCA-induced tumors (0.33) was intermediate between values obtained with TCA and TRI, but not significantly different from TRI. No significant differences were found in the mutation spectra of tumors produced by the three compounds. The presence of mutations in H-ras codon 61 appeared to be a late event, but ras-dependent signaling pathways were activated in all tumors. These data are not consistent with the hypothesis that all liver tumors induced by TRI were produced by TCA.  相似文献   

7.
Chloral hydrate (CH) is a widely used sedative. Its pharmacological and toxicological effects are directly related to its metabolism. Prior investigations of CH metabolism have been limited by the lack of analytical techniques sufficiently sensitive to identify and quantify metabolites of CH in biological fluids. In this study a gas chromatography mass spectrometry (GC/MS) method was developed and validated for determining CH and its metabolites, monochloroacetate (MCA), dichloroacetate (DCA), trichloroacetate (TCA) and total trichloroethanol (free and glucuronidated form, TCE and TCE-Glu) in human plasma. Of these, DCA and MCA are newly identified metabolites in humans. The drug, its plasma metabolites and an internal standard, 4-chlorobutyric acid (CBA), were derivatized to their methyl esters by reacting with 12% boron trifluoride-methanol complex (12% BF3-MeOH). The reaction mixture was extracted with methylene chloride and analyzed by GC/MS, using a selected ion monitoring (SIM) mode. The quantitation limits of MCA, DCA, TCA, and TCE were between 0.12 and 7.83 microM. The coefficients of variation were between 0.58 and 14.58% and the bias values ranged between -10.03 and 14.37%. The coefficients of linear regression were between 0.9970 and 0.9996.  相似文献   

8.
Trichloroethylene (TRI) is readily absorbed into the body through the lungs and gastrointestinal mucosa. Exposure to TRI can occur from contamination of air, water, and food; and this contamination may be sufficient to produce adverse effects in the exposed populations. Elimination of TRI involves two major processes: pulmonary excretion of unchanged TRI and relatively rapid hepatic biotransformation to urinary metabolites. The principal site of metabolism of TRI is the liver, but the lung and possibly other tissues also metabolize TRI, and dichlorovinyl-cysteine (DCVC) is formed in the kidney. Humans appear to metabolize TRI extensively. Both rats and mice also have a considerable capacity to metabolize TRI, and the maximal capacities of the rat versus the mouse appear to be more closely related to relative body surface areas than to body weights. Metabolism is almost linearly related to dose at lower doses, becoming dose dependent at higher doses, and is probably best described overall by Michaelis-Menten kinetics. Major end metabolites are trichloroethanol (TCE), trichloroethanol-glucuronide, and trichloroacetic acid (TCA). Metabolism also produces several possibly reactive intermediate metabolites, including chloral, TRI-epoxide, dichlorovinyl-cysteine (DCVC), dichloroacetyl chloride, dichloroacetic acid (DCA), and chloroform, which is further metabolized to phosgene that may covalently bind extensively to cellular lipids and proteins, and, to a much lesser degree, to DNA. The toxicities associated with TRI exposure are considered to reside in its reactive metabolites. The mutagenic and carcinogenic potential of TRI is also generally thought to be due to reactive intermediate biotransformation products rather than the parent molecule itself, although the biological mechanisms by which specific TRI metabolites exert their toxic activity observed in experimental animals and, in some cases, humans are not known. The binding intensity of TRI metabolites is greater in the liver than in the kidney. Comparative studies of biotransformation of TRI in rats and mice failed to detect any major species or strain differences in metabolism. Quantitative differences in metabolism across species probably result from differences in metabolic rate and enterohepatic recirculation of metabolites. Aging rats have less capacity for microsomal metabolism, as reflected by covalent binding of TRI, than either adult or young rats. This is likely to be the same in other species, including humans. The experimental evidence is consistent with the metabolic pathways for TRI being qualitatively similar in mice, rats, and humans. The formation of the major metabolites--TCE, TCE-glucuronide, and TCA--may be explained by the production of chloral as an intermediate after the initial oxidation of TRI to TRI-epoxide.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
To examine the biliary excretion of trichloroethylene (TRI) and its metabolites, we carried out various experiments with TRI and its metabolites, i.e., chloral hydrate (CH), free-trichloroethanol (F-TCE) and trichloroacetic acid (TCA), using anesthetized dogs. The amount of biliary excretion was significantly increased with the administration of CH and F-TCE, whereas it remained at control levels with the administration of TRI and TCA. The substances excreted into bile were conducted in the form of conjugated-TCE (Conj-TCE) in over 90% of the CH, F-TCE and TRI administration groups. About 95% of these Conj-TCE were conjugated with glucuronic acid. The cumulative excretion ratios of substances and metabolites to dose were 20% for CH and F-TCE, and about 1% for TCA and TRI 2 h after administration.  相似文献   

10.
To examine the details concerning that part of TRI metabolism which was carried out by the extrahepatic organs, we studied the extrahepatic metabolism of chloral hydrate (CH), free-trichloroethanol (F-TCE) and trichloroacetic acid (TCA) using a method developed in our laboratory. Bypass and non-bypass dogs were given CH, F-TCE and TCA, and we compared the concentrations these substances and their metabolites in the serum and urine of the two groups of animals. In the bypass dogs, F-TCE, TCA and conjugated-trichloroethanol (Conj-TCE) appeared in the blood and urine 30 min. after the CH administration, and TCA and Conj-TCE appeared 30 min. after the F-TCE. All levels of administered substance were higher in bypass dogs than in non-bypass dogs, and the compounds were metabolized in small amounts in the extrahepatic organs compared with the liver. Therefore, administered substances remained at high levels in the serum and were excreted in large amounts in the urine in the form of unchanged substances. The metabolized percentage volumes of CH to TCA in the bypass dogs were 10-20%, and those of F-TCE to TCA were very small, while these percentage values of CH to F-TCE were the same or slightly smaller, respectively. Moreover, trichloroethylene (TRI) acts to decrease the leukocyte count in the blood, but the TRI metabolites described above do not have this function.  相似文献   

11.
A urinary trichloroacetic acid (TCA) concentration of 100 mg/l at the end of the last work shift (8 h/day, 5 days/week) of the week has been established in workers as exposure equivalent for the carcinogenic substance trichloroethene (EKA for TRI) at an exposure concentration of 50 ppm TRI. Due to the continuous reduction of atmospheric TRI concentrations during the last years, the quantitative relation given by the EKA for TRI is revised for exposures to low TRI concentrations. A physiological two-compartment model is presented by which the urinary TCA concentrations are calculated that result from inhaled TRI in humans. The model contains one compartment for trichloroethanol (TCE) and one for TCA. Inhaled TRI is metabolized to TCA and to TCE. The latter is in part further oxidized to TCA. Urinary elimination of TCA is modeled to obey first order kinetics. All required model parameters were taken form the literature. In order to evaluate the model performance on the urinary TCA excretion at low exposure concentrations, predicted urinary TCA concentrations were compared with data obtained in two volunteer studies and in one field study. The model was evaluated at exposure concentrations as low as 12.5 ppm TRI. It is demonstrated that the correlation described by the hitherto used EKA for TRI is also valid at low TRI concentrations. For TRI exposure concentrations of 0.6 and 6 ppm, the resulting urinary TCA concentrations at the end of the last work shift of a week are predicted to be 1.2 and 12 mg/l, respectively.  相似文献   

12.
Subacute toxicity of trichloroacetic acid in male and female rats   总被引:1,自引:0,他引:1  
M E Davis 《Toxicology》1990,63(1):63-72
Trichloroacetic acid, TCA, is a water chlorination by-product similar to dichloroacetic acid, DCA. Because DCA has been shown to have effects on intermediary metabolism, TCA was tested to determine if it possesses similar capabilities. The effects were more pronounced in females. High doses of TCA (2.45 mumol/kg three times) decreased plasma glucose and lactate concentrations and liver lactate concentration. DCA had similar, less pronounced effects. In males DCA and TCA each decreased plasma lactate concentrations. Rats were exposed to TCA in drinking water for 14 days. The highest concentration (2.38 g/l) caused decreases of water and food consumption and loss of body weight. At 7 days females had decreased urine volume accompanied by a modest increase of urine osmolality, resulting in a significant decrease of excretion of solute. Concentrations of glucose in plasma and lactate in tissues were not significantly affected by this subchronic TCA exposure. These results indicate that TCA may have effects on intermediary metabolism similar to those of DCA.  相似文献   

13.
Trichloroethylene (TCE) is metabolized to chloral hydrate (CH) by the cytochrome P-450 monooxygenase system. CH can either be oxidized by chloral hydrate dehydrogenase to trichloroacetic acid (TCA) or reduced by alcohol dehydrogenase to trichloroethanol (TCEtOH). The oxidation reaction requires NAD+, while the reduction reaction requires NADH. Since ethanol (EtOH) is known to alter the NAD+/NADH ratio in the hepatocyte, it was coadministered with TCE in an attempt to alter the metabolism of TCE. This would provide a means for predicting interactions of ethanol on the hepatotoxicity and carcinogenicity of TCE. Male Sprague-Dawley rats were administered oral doses of either 1.52, 4.56, or 22.8 mmol/kg TCE, with the treatment group receiving an additional 1.52, 4.56, or 22.8 mmol/kg EtOH, respectively. Blood and urine samples were collected over 72 h. The clearance of TCE appeared to be saturated at the 4.56 mmol/kg dose, as evidenced by prolonged residence times for TCE in the body. Consistent with this result, there was an attenuation of the increases in the levels of TCEtOH and TCA in blood. However, the time to peak concentration of these metabolites was delayed with increasing doses and their residence time in the body was prolonged. Therefore, the area under the curve (AUC) for TCEtOH and TCA continued to increase with the higher doses of TCE. Measurement of the net output of these metabolites in urine confirmed that, although metabolism was saturated, the net metabolic conversion of TCE increased. As predicted, EtOH decreased blood levels of TCA, but only at early times at the high dose. EtOH did increase the urinary TCEtOH/TCA ratio at all dose levels. These results are consistent with the hypothesis of a more reduced state in the hepatocyte caused by the generation of excessive reducing equivalents by EtOH metabolism. The metabolism of TCE is shifted toward reduction to TCEtOH, away from oxidation to TCA. However, the effect was prominent only at extremely high doses of TCE and EtOH.  相似文献   

14.
The industrial solvent trichloroethylene (TCE) and its major metabolites have been shown to cause formic aciduria in male rats. We have examined whether chloral hydrate (CH) and trichloroacetic acid (TCA), known metabolites of TCE, produce an increase in formic acid in vitro in cultures of rat hepatocytes or human renal proximal tubule cells (HRPTC). The metabolism and cytotoxicity of CH was also examined to establish that the cells were metabolically active and not compromised by toxicity. Rat hepatocytes and HRPTC were cultured in serum-free medium and then treated with 0.3–3 mM CH for 3 days or 0.03–3 mM CH for 10 days, respectively and formic acid production, metabolism to trichloroethanol (TCE-OH) and TCA and cytotoxicity determined. No increase in formic acid production in rat hepatocytes or HRPTC exposed to CH was observed over and above that due to chemical degradation, neither was formic acid production observed in rat hepatocytes exposed to TCA. HRPTC metabolized CH to TCE-OH and TCA with a 12-fold greater capacity to form TCE-OH versus TCA. Rat hepatocytes exhibited a 1.6-fold and three-fold greater capacity than HRPTC to form TCE-OH and TCA, respectively. CH and TCA were not cytotoxic to rat hepatocytes at concentrations up to 3 mM/day for 3 days. With HRPTC, one sample showed no cytotoxicity to CH at concentrations up to 3 mM/day for 10 days, while in another cytotoxicity was seen at 1 mM/day for 3 days. In summary, increased formic acid production was not observed in rat hepatocytes or HRPTC exposed to TCE metabolites, suggesting that the in vivo response cannot be modelled in vitro. CH was toxic to HRPTC at millimolar concentrations/day over 10 days, while glutathione derived metabolites of TCE were toxic at micromolar concentrations/day over 10 days [Lock, E.A., Reed, C.J., 2006. Trichloroethylene: mechanisms of renal toxicity and renal cancer and relevance to risk assessment. Toxicol. Sci. 19, 313–331] supporting the view that glutathione derived metabolites are likely to be responsible for nephrotoxicity.  相似文献   

15.
Adducts to macromolecules from trichloroethylene formed by invivo and in vitro metabolism have been reported by many investigators.We examined the in vivo adduction of the blood proteins hemoglobin(Hb) and albumin in rats and mice dosed orally with [14C]trichloroethylene([14C]TRI) to explore the development of a protein adduct biomarkerof TRI exposure. We also examined the adduction of these twoproteins from doses of [14C]trichloroacetate (TCA) and [14C]dichloroacetate(DCA), two metabolites of TRI. Association of label with albuminpeaked at 4–8 hr in the rat (2480 nmol eq TRI/mg protein)and 2–4 hr in the mouse (1580 nmol eq TRI/mg protein).The decay was exponential with a half-life consistent with thatof rat or mouse albumin (approx 24 hr). The time course of labelwith Hb was characterized by an early plateau at 8 hr in rat(28 nmol eq TRI/ mg protein), 4 hr in mouse (7 nmol eq TRI/mgprotein), and followed by a slow steady increase, peaking at120 hr (54 nmol eq TRI/mg protein, rat; 38 nmol eq TRI/mg protein,mouse). This apparent binding was linear with dose in the rat,but was convex in the mouse albumin (mouse Hb label was belowdetection at low dose). We also found that a portion of theirreversibly associated label, referred to by previous investigatorsas "binding," could be accounted for as metabolic incorporationof label into glycine and serine. The fraction accounted forby metabolic incorporation was constant in albumin (approximately), while in Hb, this portion was time dependent, approximately30% at the early sampling time, 75% at the late time, implyingthe observed late increase could be accounted for by metabolicincorporation. TCA and DCA also formed Hb and albumin adducts.Portions of this binding was also due to metabolic incorporation.The pattern of the binding from TCA in albumin was differentfrom that of TRI, implying a route to adduct from TRI whichdoes not proceed through TCA.  相似文献   

16.
The effect of 2 m M ethanol, a concentration indicative of daily alcohol consumption, was investigated on trichloroethylene (TRI) metabolism in perfused Wistar rat liver. The study consisted of two parts: The first part studied TRI administration with or without ethanol. In the second study chloral hydrate (CH), an intermediate in TRI metabolism, was administered in the absence or presence of ethanol to phenobarbital (PB) treated or non-PB-treated rats. The concentrations of the metabolites, total trichloroethanol (TCE), and trichloroacetic acid (TCA) were measured by gas chromatography and intracellular reduced pyridine nucleotides by surface fluorometry. In the first study, ethanol infusion significantly increased the TCE/TCA ratio, TCE production rate, and percentage of reduced pyridine nucleotides, and decreased TCA production rate without an associated change in the sum of TCE and TCA formation rates. In the second study, ethanol infusion in the absence or presence of PB produced similar significant increases in the TCE/TCA ratio, TCE production rate, and percentage of reduced pyridine nucleotides, accompanied by a decrease in TCA formation. The observed shift in TRI metabolism in the presence of ethanol, from oxidation to TCA to reduction to TCE, suggests that alcohol exerts alterations in hepatic intracellular oxidation-reduction (redox) states.  相似文献   

17.
Male Long-Evans rats were exposed to 0 (controls) or 500 ppm trichloroethylene (TRI) for 6 months, 6 h daily, and 5 days a week. The TRI metabolites trichloroethanol (TCE) in blood and trichloroacetic acid (TCA) in urine were measured. Specific parameters related to the renal damage were determined in urine [biomarker for glomerular damage: high molecular weight proteins (HMW), albumin (ALB); for proximal tubular damage: N-acetyl-beta-D-glucosaminidase (NAG), low-molecular-weight-proteins (LMW)]. Significantly increased concentrations of NAG and LMW in urine of exposed rats were detected. No DNA-strand breaks in kidney cells could be detected using the comet assay, and histological examinations were performed. Histological alterations were observed in glomeruli and tubuli of exposed rats. The release of biomarkers for nephrotoxicity suggested alterations preferably in the proximal tubules of the exposed rats.  相似文献   

18.
The metabolism of chloral hydrate (CH) under anoxic conditions was investigated in the non-recirculating, hemoglobin-free liver perfusion system. CH uptake in the anoxic liver decreased to about 80% of that in the oxygen-supplied liver. The reduction of CH to trichloroethanol (TCE) increased and the oxidation of CH to trichloroacetic acid (TCA) decreased. The TCE/TCA ratio increased; however, the total trichloro compounds, that is TCE and TCA, were not significantly altered by anoxia. Though approximate 14% of the CH infused into the oxygen-supplied liver was changed to substances other than TCE or TCA, the unknown part was a very small portion in the anoxic liver. The decrease in CH uptake, by the anoxic liver, is thought to be equivalent to the decrease of the unknown metabolites. The TCE/TCA ratio under anoxia was also altered by pyruvate or lactate infusion.  相似文献   

19.
Male Wistar rats pretreated with ethanol (2.0 g in 80 ml liquid diet/day for 3 weeks) or phenobarbital (PB, 80 mg/kg/day ip for 4 days) were exposed by inhalation to 500, 1000, 2000, 4000, or 8000 ppm trichloroethylene (TRI) for 2 or 8 hr, and the blood concentration of TRI and the urinary concentration of TRI metabolites (trichloroethanol (TCE) and trichloroacetic acid (TCA] were determined at various times. Plasma glutamic-pyruvic transaminase (GPT) activity was measured 22 hr after the end of exposure as an indicator of hepatic damage. Both ethanol and PB enhanced TRI metabolism as evidenced by accelerated disappearance of TRI from the blood and increased excretion of total trichloro compounds (TCE + TCA) in the urine. However, the effects of ethanol and PB were different from each other: ethanol markedly enhanced the metabolism particularly at TRI concentration of 2000 ppm or lower, whereas PB enhanced it only at 4000 ppm or higher. This difference was also reflected in the effect of TRI on liver: ethanol potentiated TRI hepatotoxicity more markedly than did PB when TRI concentration remained 2000 ppm or lower, whereas PB potentiated the toxicity more markedly than ethanol when the concentration was 4000 ppm or higher. It is noteworthy that ethanol potentiated TRI hepatotoxicity at a TRI concentration as low as 500 ppm. The severity of hepatic damage expressed by plasma GPT activity essentially paralleled the urinary excretion rate of total trichloro compounds during and 4 hr after exposure (r = 0.87 to 0.93). Compared between the contribution of concentration and duration of exposure to the toxicity, a higher concentration of TRI tended to cause more severe liver damage to PB-treated rats than did a prolonged period of exposure, whereas the toxicity in ethanol-treated rats was generally more marked in rats exposed to TRI for a longer period than in rats exposed to a higher concentration.  相似文献   

20.
In order to examine the cholecystohepatic circulation of trichloroethylene (TRI) and its metabolites, we injected the gallbladder with TRI and its metabolites, i.e. chloral hydrate (CH), free-trichloroethanol (F-TCE), trichloroacetic acid (TCA) and conjugated-trichloroethanol (Conj-TCE), using anesthetized dogs. The absorption rates of water from the gallbladder were 25-30% 2 h after administration for all substances. The absorption rates of substances were 65-70% in the CH, F-TCE and TRI groups, and 40-50% in the Conj-TCE and TCA groups 2 h after the administration. Conj-TCE in the blood absorbed from the gallbladder has a tendency to be directly transported to the venous system rather than to be taken into hepatocytes in the liver. All of the administered substances, in particular, F-TCE might be metabolized to other substances in the gallbladder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号