首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A piezoelectric quartz sensor coated with molecularly imprinted polymer (MIP) for caffeine was developed. The MIP was prepared by co-polymerizing methacrylic acid (MAA) and ethylene glycol dimethacrylate (EDMA) in the presence of azobis(isobutyronitrile) as initiator, caffeine as template molecule, and chloroform as solvent. The MIP suspension in polyvinyl chloride/tetrahydrofuran (6:2:1 w/w/v) solution was spin coated onto the surface of the electrode of a 10 MHz AT-cut quartz crystal. The sensor exhibited a linear relationship between the frequency shift and caffeine concentration in the range of 1×10–7 mg mL–1 up to 1x10–3 mg mL–1 [correlation coefficient (r)=0.9935] in a stopped flow measurement mode. It has a sensitivity of about 24 Hz/ln(concentration, mg mL–1). A steady-state response was achieved in less than 10 min. The performance characteristic of the sensor shows a promising and inexpensive alternative method of detecting caffeine. Surface studies were carried out for the reagent phase of the sensor using SEM, AFM, and XPS analysis in order to elucidate the imprinting of the caffeine molecule. The SEM micrograph, AFM image, and XPS spectra confirmed the removal of caffeine by Soxhlet extraction in the imprinting process and the rebinding of caffeine to the MIP sensing layer during measurement.  相似文献   

2.
This paper reports the synthesis and testing of a molecularly imprinted polymer membrane for digoxin analysis. Digoxin-specific bulk polymer was obtained by the UV initiated co-polymerisation of methacrylic acid and ethylene glycol dimethacrylate in acetonitrile as porogen. After extracting the template analyte, the ground polymer particles were mixed with plasticizer polyvinyl chloride to form a MIP membrane. A reference polymer membrane was prepared from the same mixture of monomers but with no template. The resultant membrane morphologies were examined by scanning electron microscopy. The imprinted membrane was tested as the recognition element in a digoxin-sensitive fluorescence sensor; sensor response was measured using standard solutions of digoxin at concentrations of up to 4 × 10−3 mg L−1. The detection limit was 3.17 × 10−5 mg L−1. Within- and between-day relative standard deviations RSD (n = 5) were in the range 4.5-5.5% and 5.5-6.5% respectively for 0 and 1 × 10−3 mg L−1 digoxin concentrations. A selectivity study showed that compounds of similar structure to digoxin did not significantly interfere with detection for interferent concentrations at 10, 30 and 100 times higher than the digoxin concentration. This simply manufactured MIP membrane showed good recognition characteristics, a high affinity for digoxin, and provided satisfactory results in analyses of this analyte in human serum.  相似文献   

3.
合成了甲福明的分子印迹聚合物,以此聚合物为识别物质,在线分离富集甲福明,建立了一种测定甲福明的流动式化学发光但感器。N-溴代丁二酰亚胺(NBS)和荧光素与甲福明发生化学反应,产生强的化学发光。甲福明质量浓度在2×10-8~8×10-6g/mL范围内同发光强度成良好线性关系,方法的检出限为6×10-9g/mL,相对标准偏差小于5%(n=9)。选择性实验表明将分子印迹聚合物作为识别物质应用于化学发光分析中,能大大提高化学发光分析方法的选择性。该传感器可逆性强、稳定性好,可重复使用100次以上,已用于人体尿样中甲福明的测定。  相似文献   

4.
In this article, for the first time, a molecularly imprinted polymer (MIP) for the metolcarb was prepared by bulk polymerization using metolcarb as the template, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross‐linker. The prepared polymer was characterized by FT‐IR, static and kinetic adsorption experiments, and the results showed that it has been successfully synthesized and had good selective ability for metolcarb. The MIP was applied as a sorbent in molecularly imprinted SPE coupled with HPLC‐UV for separation and determination of trace metolcarb in three kinds of food matrices at three concentration levels. Under the optimal conditions, the LODs (S/N=3) of cabbage, cucumber and pear were 7.622, 6.455 and 13.52 μg/kg, respectively, and recoveries were in the range of 68.80–101.31% with RSD (n=3) below 3.78% in all cases. To demonstrate further the selectivity of the MIP obtained, a comparison with commercially available C18 SPE was performed. The results indicated that molecularly imprinted SPE showed better chromatography, better selectivity and higher recoveries for metolcarb than commercially available C18 SPE.  相似文献   

5.
In this work a parathion selective molecularly imprinted polymer was synthesized and applied as a high selective adsorber material for parathion extraction and determination in aqueous samples. The method was based on the sorption of parathion in the MIP according to simple batch procedure, followed by desorption by using methanol and measurement with square wave voltammetry. Plackett-Burman and Box-Behnken designs were used for optimizing the solid-phase extraction, in order to enhance the recovery percent and improve the pre-concentration factor. By using the screening design, the effect of six various factors on the extraction recovery was investigated. These factors were: pH, stirring rate (rpm), sample volume (V1), eluent volume (V2), organic solvent content of the sample (org%) and extraction time (t). The response surface design was carried out considering three main factors of (V2), (V1) and (org%) which were found to be main effects. The mathematical model for the recovery percent was obtained as a function of the mentioned main effects. Finally the main effects were adjusted according to the defined desirability function. It was found that the recovery percents more than 95% could be easily obtained by using the optimized method. By using the experimental conditions, obtained in the optimization step, the method allowed parathion selective determination in the linear dynamic range of 0.20-467.4 μg L−1, with detection limit of 49.0 ng L−1 and R.S.D. of 5.7% (n = 5). Parathion content of water samples were successfully analyzed when evaluating potentialities of the developed procedure.  相似文献   

6.
A supported liquid membrane system has been developed for the extraction of vanillin from food samples. A porous PTFE membrane is impregnated with an organic solvent, which forms a barrier between two aqueous phases. The analyte is extracted from a donor phase into the hydrophobic membrane and then back extracted into a second aqueous solution, the acceptor. The determination (100–1400 μg ml−1 vanillin) was performed using a PVC-graphite composite electrode versus Ag/AgCl/3MKCl at +0.850 V placed in a wall-jet flow cell as amperometric detector. The solid sample is directly placed in the membrane unit without any treatment, and the analyte was extracted from the sample, passes through the membrane and conduced to the flow cell by the acceptor stream. The limit of detection (3σ) was 44 μg ml−1. The method was applied to the determination of vanillin (9–606 μg g−1) in food samples.  相似文献   

7.
He D  Zhang Z  Zhou H  Huang Y 《Talanta》2006,69(5):1215-1220
Based on a molecularly imprinted polymer (MIP) as the recognition element, a novel chemiluminescence (CL) micro flow sensor on a chip for the determination of terbutaline in human serum is described. The MIP was prepared by using terbutaline as the template, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linking monomer, and acetonitrile as the solvent. The chip was fabricated from two 50 mm × 40 mm × 5 mm transparent poly (methylmethacrylate) (PMMA) slices. The microchannels on the chip etched by CO2 laser were 200 μm wide and 150 μm deep. The microsensor cell filled with 2 mg MIP for selectively on line adsorbing terbutaline was 10 mm long, 1 mm wide, and 0.5 mm deep. All reagents were controlled by the syringe pump with an accurate timer. The on line adsorbed terbutaline by the MIP can enhance the CL intensity of the reaction of luminol with ferricyanide. The enhanced CL intensity is linear with terbutaline concentration from 8.0 to 100 ng/mL with a detection limit of 4.0 ng/mL (3σ). The micro flow sensor provides for good reproducibility with the relative standard deviation of 3.6% (n = 7) for 20 ng/mL terbutaline.  相似文献   

8.
In this paper, a novel flow chemiluminescence (CL) clenbuterol sensor based on molecularly imprinted polymer (MIP) on line enrichment nanogram clenbuterol and chemiluminescence reaction of potassium permanganate and formaldehyde in the polyphosphate enhanced by clenbuterol. Clenbuterol in the urine was selectively adsorbed on the clenbuterol-imprinted polymer, which was packed into the flow cell. The formaldehyde and the polyphosphate with potassium permanganate flowed through the flow cell and reacted with the on line adsorbed clenbuterol and produced strong CL. The results show that the sensor was reversible. The CL intensity was linear with clenbuterol concentration from 1.0 × 10−9 g/mL to 5.0 × 10−8 g/mL. The detection limit was 3.0 × 10−10 g/mL. The R.S.D. for ng/mL clenbuterol was less than 5% (n = 3). The present method offered a high selectivity and sensitivity that made the quantitative analysis of trace clenbuterol (ng/mL) in the animal urine sample.  相似文献   

9.
A novel and highly selective optical sensor with molecularly imprinted polymer (MIP) film was fabricated and investigated. The optical sensor head employing a medium finesse molecularly imprinted polymer film has been fabricated and characterised. A blank polymer and formaldehyde imprinted polymer were using methacrylic acid as the functional monomer and the ethylene glycol dimethacrylate as a crosslinker. The transduction mechanism is discussed based on the changes of optical intensity of molecularly imprinted polymer film acting as an optical reflected sensor. Template molecules, which diffused into MIP, could cause film density, and refractive index change, and then induce measurable optical reflective intensity shifts. Based on the reflective intensity shifts, an optical reflection detection of formaldehyde was achieved by illuminating MIP with a laser beam. For the same MIP, the reflective intensity shift was proportional to the amount of template molecule. This optical sensor, based on an artificial recognition system, demonstrates long-time stability and resistance to harsh chemical environments. As the research moves forward gradually, we establish the possibilities of quantitative analysis primly, setting the groundwork to the synthesis of the molecular imprinted optical fiber sensor. The techniques show good reproducibility and sensitivity and will be of significant interest to the MIPcommunity.  相似文献   

10.
An analytical methodology incorporating a molecularly imprinted solid-phase extraction procedure (MISPE) has been developed for the determination of parabens in environmental solid samples. Four different polymers were prepared combining the use of acetonitrile or toluene as porogen, and 4-vinylpyridine (VP) or methacrylic acid (MAA) as monomer, using benzylparaben (BzP) as a template molecule. Although all the polymers were able to recognize the template in rebinding experiments, the MIP prepared in toluene using MAA showed better performance. This polymer was also capable of recognizing other parabens (methyl, ethyl, isopropyl, propyl, isobutyl, butyl and benzylparaben) allowing to develop an appropriated MISPE procedure for this family of compounds. The extraction of the parabens from environmental solid samples was performed by ultrasonic assisted extraction in small columns (SAESC), and this procedure next to MISPE as clean-up step followed by HPLC-UV determination was successfully used for the determination of parabens in soil and sediment samples of different locations. Recoveries ranging from 80% to 90% have been achieved depending on the compound and the samples, and limits of detection (LODs) were under 1 ng g−1 for all the compounds, making this method suitable for the determination of parabens in environmental solid matrices. The method was further applied to the determination of paraben contents in real samples, founding levels up to 11.5 ng g−1 in sea sediments.  相似文献   

11.
氯丙嗪分子印迹化学发光微流控传感器芯片的研究   总被引:5,自引:0,他引:5  
以氯丙嗪分子印迹聚合物为识别物质,以鲁米诺-K3Fe(CN)6化学发光体系,建立了一种新型的氯丙嗪化学发光微流控分子印迹传感器芯片的检测方法。利用二氧化碳激光在聚甲基丙烯酸甲酯材质上刻蚀出200μm宽,150μm深的微通道,8 mm长,1 mm宽,0.5 mm深的微检测池。微检测池中填充50μm粒径大小的热聚合得到的氯丙嗪分子印迹聚合物作为识别物质,在线富集氯丙嗪,富集的氯丙嗪可以增强鲁米诺和K3Fe(CN)6的化学发光强度,以化学发光强度定量氯丙嗪量。该传感器的响应值与0.02~0.4μg/mL氯丙嗪呈良好的线性关系,检出限为8 ng/mL(3σ)。该微流控传感器芯片已用于测定人尿液中的氯丙嗪。  相似文献   

12.
以分子印迹作为识别体,制成高灵敏度和高选择性的化学发光传感器在线检测牛肉与鸡肉组织中残留的磺胺嘧啶。磺胺嘧啶作为靶分子,通过悬浮聚合制备了1~10μm的分子印迹聚合物。将分子印迹聚合物装入聚四氟乙烯管中,作为固相萃取柱,并联在八通阀上,用于在线选择吸附磺胺嘧啶。在最佳条件下,测得磺胺嘧啶线性范围7.0×10–9~9.0×10–7g/mL,方法的检出限为(3σ)2×10–10g/mL,11次平行测定3.0×10–8g/mL的磺胺嘧啶溶液的化学发光强度相对标准偏差为3.4%。方法能够用于检测肉类产品中残留的磺胺嘧啶。  相似文献   

13.
Fenfluramine-imprinted polymer was prepared by self assembly with acrylic amide as functional monomer and ethylene glycol dimethacrylate as crosslinker. The binding characteristics of the imprinted polymer to fenfluramine were evaluated by equilibrium binding experiments and the morphology was studied by SEM. Taking the imprinted polymer as recognition material, using the new 3-p-nitrylphenyl-5-(4′-methyl-2′-sulfonophenylazo)rhodanine (M4NRASP) synthesized by the authors as chemiluminescence reagent, a new highly selective flow injection chemiluminescence sensor for trace fenfluramine with good sensitivity was established which utilized the chemiluminescence reaction between fenfluramine, M4NRASP, and potassium permanganate in hydrochloric acid. The traditional flow-through cell was replaced with a polymethyl methacrylate module, with Y-shaped flow path, through which the above three reactants were injected simultaneously. Under optimum conditions the relative chemiluminescence intensity shows a linear relationship with the concentration of fenfluramine over the range of 5×10–7 to 8×10–6 g/mL with a lower detection limit of 3.4×10–8 g/mL. The relative standard deviation for the determination of 1.0×10–6 g/mL fenfluramine solution was 2.4% (n = 11). This proposed sensor could be satisfactorily applied to the determination of fenfluramine in weight-reducing capsules.  相似文献   

14.
以丙烯酰胺为功能单体,葛根素为模板分子,马来松香丙烯酸乙二醇酯为交联剂,采用循环伏安法合成了葛根素分子印迹膜,并以此为识别元件制备了葛根素电化学传感器。该传感器对葛根素具有高度的选择性和良好的敏感度,葛根素氧化峰电流与其浓度在6.0×10-8~1.6×10-3mol/L范围内呈良好的线性关系,检出限为2.0×10-8mol/L。将此传感器用于葛根素注射液和木瓜葛根片中葛根素的含量测定,回收率为97.7%~106.4%。  相似文献   

15.
The proposed L ‐histidine sensing system composed of a molecularly imprinted solid‐phase microextraction component combined with a molecularly imprinted polymer sensor was used to determine critical levels of test analyte in a complex matrix of highly diluted human blood serum without any non‐specific sorption and false‐positive contributions. The molecularly imprinted polymer was a zwitterionic polymer brush derived from the disodium salt of EDTA and chloranil, grafted to solid‐phase microextraction material. The hyphenated approach was able to detect L ‐histidine quantitatively with a limit of detection as low as 0.0435 ng/mL (RSD = 0.2%, S/N = 3).  相似文献   

16.
In this paper we describe, for the first time, a molecularly imprinted polymer (MIP) for the antibiotic amoxicillin (AMX), synthesised by a noncovalent molecular imprinting approach and used to extract AMX selectively from urine samples. The MIP was applied as a molecularly selective sorbent in molecularly imprinted SPE (MISPE) in an off-line mode, where it showed useful cross-selectivity for a structurally related antibiotic, cephalexin (CPX). By using a MISPE protocol, the MIP was able to selectively extract both AMX and CFX from 5 mL of water spiked with 10 mg/L with recoveries of 75 and 78% for AMX and CFX, respectively. When applied to real samples (urine) at clinically relevant concentrations, recoveries from 2 mL of human urine spiked with 20 mg/L decreased slightly to 65 and 63% for AMX and CFX, respectively. To demonstrate further the selectivity of the MIP obtained, a comparison with commercially available SPE cartridges was performed. Improvements in the retention of both AMX and CFX on the MIP were obtained relative to the commercially available cartridges, and the MISPE extracts were considerably cleaner, due to molecularly selective analyte binding by the MIP.  相似文献   

17.
The estrogenic compound diethylstilbestrol (DES) is widely studied because of its potential endocrine disruption effects. The prohibition of the use of diethylstilbestrol as a growth promoter has not been enough to ensure the total disappearance of this compound from environmental matrices. Due to the low levels of DES present in the environment, preconcentration and clean up methods are necessary for its analysis. This paper describes the synthesis and use of a molecularly imprinted polymer (MIP) as sorbent for on-column solid-phase extraction of DES from aqueous samples. The selectivity of the DES-MIP was evaluated towards several selected estrogens such as hexestrol (HEX), estrone (E1), estriol (E3), estradiol (E2) and ethynylestradiol (EE2). HPLC-DAD was used to quantify all analytes at 230-nm wavelength. The method has been successfully applied to the analysis of DES in spiked river and tap water samples, with recoveries of 72% and 83% respectively.  相似文献   

18.
A newly designed molecularly imprinted polymer (MIP) was synthesized and successfully utilized as a recognition element of an amperometric sensor for 2,4-dichlorophenol (2,4-DCP) detection. The MIP with a well-defined structure could imitate the dehalogenative function of the natural enzyme chloroperoxidase for 2,4-DCP. Imprinted sensor was fabricated in situ on a glassy carbon electrode surface by drop-coating the 2,4-DCP imprinted microgel suspension and chitosan/Nafion mixture. Under optimized conditions, the sensor showed a linear response in the range of 5.0–100 μmol L−1 with a detection limit of 1.6 μmol L−1. Additionally, the imprinted sensor demonstrated higher affinity to target 2,4-DCP over competitive chlorophenolic compounds than non-imprinted sensor. It also exhibited good stability and acceptable repeatability. The proposed sensor could be used for the determination of 2,4-DCP in water samples with the recoveries of 96.2–111.8%, showing a promising potential in practical application.  相似文献   

19.
Cotinine, the main metabolite of nicotine in human body, is widely used as a biomarker for assessment of direct or passive exposure to tobacco smoke. A method for molecularly imprinted solid-phase extraction (MISPE) of cotinine from human urine has been investigated. The molecularly imprinted polymer (MIP) with good selectivity and affinity for cotinine was synthesized using cotinine as the template molecule, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker. The imprinted polymer was evaluated for use as a SPE sorbent, in tests with aqueous standards, by comparing recovery data obtained using the imprinted form of the polymer and a non-imprinted form (NIP). Extraction from the aqueous solutions resulted in more than 80% recovery. A range of linearity for cotinine between 0.05 and 5 μg mL−1 was obtained by loading 1 mL blank urine samples spiked with cotinine at different concentrations in acetate buffer of pH 9.0, and by using double basic washing and acidic elution. The intra-day coefficient of variation (CV) was below 7% and inter-day CV was below 10%. This investigation has provided a reliable MISPE–HPLC method for determination of cotinine in human urine from both active smokers and passive smokers. Figure  相似文献   

20.
A method is proposed for the clean-up and preconcentration of natural and synthetic estrogens from aqueous samples employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE). The selectivity of the MIP was checked toward several selected natural and synthetic estrogens such as estrone (E1), 17β-estradiol (β-E2), 17α-estradiol (α-E2), estriol (E3), 17α-ethinylestradiol (EE2), dienestrol (DIES) and diethylstilbestrol (DES). Ultrahigh pressure liquid chromatography (UHPLC) coupled to a TSQ triple quadrupole mass spectrometry (QqQ) was used for analysis of target analytes. The chromatographic separation of the selected compounds was performed in less than 2 min under isocratic conditions. The method was applied to the analysis of estrogens in spiked river and tap water samples. High recoveries (>82%) for estrone, 17β-estradiol, 17α-estradiol, estriol and 17α-ethinylestradiol were obtained. Lower but still satisfactory recoveries (>48%) were achieved for dienestrol and diethylstilbestrol. The method was validated and found to be linear in the range 50-500 ng L(-1) with correlation coefficients (R(2)) greater than 0.995 and repeatability relative standard deviation (RSD) below 8% in all cases. For analysis of 100-mL sample, the method detection limits (LOD) ranged from 4.5 to 9.8 ng L(-1) and the limit of quantitation (LOQ) from 14.9 to 32.6 ng L(-1). To demonstrate the potential of the MIP obtained, a comparison with commercially available C(18) SPE was performed. Molecularly imprinted SPE showed higher recoveries than commercially available C(18) SPE for most of the compounds. These results showed the suitability of the MIP-SPE method for the selective extraction of a class of structurally related compounds such as natural and synthetic estrogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号