首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Long-term trends (i.e., 1985 through 1999; 14 1/2 yrs) of the phytoplankton community in Chesapeake Bay indicated patterns of increasing phytoplankton abundance and biomass associated with mainly diatoms and chlorophytes, and to a lesser degree dinoflagellates. Decreasing trends in productivity rates above the pycnocline were present over a shorter time period (10 1/2 yrs.), with evidence for increasing nitrogen limitation is indicated. Reduced light availability is inferred due to decreasing trends of Secchi depths and increased suspended solids trends, which were associated with decreasing trends in productivity rates.  相似文献   

2.
The goals of this study were to: (1) measure atrazine and metolachlor concentrations during both high and low use periods in the Chesapeake Bay's mainstem/major tributaries, smaller tributaries and representative small agricultural streams during 1995 and 1996; (2) compare these exposure data with toxicity benchmarks for each herbicide to predict ecological risk and (3) use in-stream fish community data collected in the streams to provide supportive data for ecological risk characterization. Spatially, atrazine (<0.10–98 g/L) and metolachlor (<0.10–68 g/L) concentrations were highest in the streams, followed by the small tributaries (<0.10–11 g/L atrazine; <0.10–8.6 g/L metolachlor) with the lowest concentration in the mainstem Bay/larger tributaries (<0.10–0.22 g/L atrazine; <0.10–0.24 g/L metolachlor). Temporally, concentrations of both herbicides were greatest in all three types of habitats in the late spring and early summer. Concentrations of atrazine and metolachlor were very low or non-detectable in all habitats sampled from early August to mid-April. Toxicity benchmarks of 20 g/L for atrazine based on an ecological No Observed Effect Concentration (NOEC) for microcosm/mesocosm studies and an acute 10th percentile of 53 g/L for metolachlor (protection of ninety % of the species) based on laboratory toxicity data were selected to assess annual and seasonal ecological risk. Both of these toxicity benchmarks were conservative estimates of ecological risk designed to protect the trophic group (plants) most sensitive to these herbicides. Based on a comparison of these toxicity benchmarks with two years of exposure data, the ecological risk from both atrazine and metolachlor exposure in the mainstem Chesapeake Bay/large tributaries, small tributaries and representative agriculturally dominated streams was generally judged to be low. During one 72-h stream rain event in 1995, the atrazine toxicity benchmark (20 g/L) was exceeded during part of the event. However, long-term permanent ecological effects are not expected based on the documented recovery potential of the most sensitive trophic group (plant communities) to the concentrations of atrazine reported and the transient nature of the atrazine pulses. Fish communities at the stream sites receiving the highest concentrations of both herbicides were judged to be healthy based on an Index of Biotic Integrity (IBI) developed for Maryland's coastal plain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号