首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
采用超声辅助共沉淀法成功地将磁性Fe3O4纳米颗粒沉积在氧化石墨烯表面,利用透射电镜、磁滞回归曲线和X射线光电子能谱对材料进行了表征。将该材料作为载体固定辣根过氧化物酶,考察了固定化酶催化2-氯酚、4-氯酚和2,4-二氯酚降解反应,研究了溶液pH值、反应温度、反应时间、H2O2和氯酚浓度以及固定化酶用量对酚类物质去除率的影响。基于取代基数量和位置不同,去除率排序为2-氯酚<4-氯酚<2,4-二氯酚。另外,采用GC-MS研究了降解过程中的氧化产物。固定化酶的生化性质研究表明,固定化酶比游离酶具有更好的储存稳定性、pH稳定性和热稳定性。经过4次循环利用,固定化酶仍保留66%的活性,说明磁性纳米材料可以分离回收并重复利用,在污水处理领域具有应用前景。  相似文献   

2.
Horseradish peroxidase (HRP) is immobilized in three easy steps on SiO(2) surfaces with the help of a polycationic second generation dendronized polymer (denpol) and the biotin-avidin system. This stepwise immobilization process is monitored and quantitatively analyzed with the transmission interferometric adsorption sensor. Partially biotinylated denpol is first adsorbed onto SiO(2) , followed by addition of avidin and then of biotinylated HRP. Denpols in their molecular structure combine properties of polymers as well as dendrimers which are found to be of clear advantage for this type of non-covalent enzyme immobilization. With respect to the reproducibility of the adsorption process and with respect to the stability of the adsorbed polymer layer, the denpol is superior to α-poly-D-lysine which is used as a reference polymer. Furthermore, HRP immobilized with the denpol on commercial glass slides remains considerably more active upon storage as compared to HRP immobilized with the help of α-poly-D-lysine with a similar number of repeating units. The ease of the denpol-mediated HRP immobilization and the high stability of the immobilized enzyme are promising for bioanalytical applications.  相似文献   

3.
《Electroanalysis》2005,17(10):862-868
The direct electron transfer and electrocatalysis of horseradish peroxidase (HRP) immobilized on hexagonal mesoporous silicas (HMS) matrix was studied. The interaction between HRP and HMS was examined by using Fourier transform infrared spectroscopy, nitrogen adsorption isotherms and electrochemical methods. The immobilized HRP at a modified glassy carbon electrode showed a good direct electrochemical behavior, which depended on the specific properties of the HMS. Two couples of redox peaks corresponding to Fe(III) to Fe(II) conversion of the HRP intercalated in the mesopores and adsorbed on the external surface of the HMS were observed with the formal potentials of ?0.315 and ?0.161 V in 0.1 M pH 7.0 PBS, respectively. The amount of HRP intercalated in the mesopores of HMS proved to be related to the pore size. The HRP intercalated in the mesopores showed a surface controlled electrode process with a single proton transfer. The immobilized HRP displayed an excellent electrocatalytic response to the reduction of hydrogen peroxide (H2O2) without the aid of an electron mediator. The HMS provided a novel matrix for protein immobilization and direct electron transfer study of the immobilized protein.  相似文献   

4.
The immobilization of horseradish peroxidase (HRP) on composite membrane has been investigated. This membrane was prepared by coating nonwoven polyester fabric with chitosan glutamate in the presence of glutraldehyde as a crosslinking agent. The physico-chemical properties of soluble and immobilized HRP were evaluated. The soluble HRP lost 90% of its activity after 4 weeks of storage at 4°C, whereas the immobilized enzyme retained 85% of its original activity at the same time. A reusability study of immobilized HRP showed that the enzyme retained 54% of its activity after 10 cycles of reuse. Soluble and immobilized HRP showed the same pH optima at pH 5.5. The immobilized enzyme had significant stability at different pH values, where it had maximum stability at pH 3.0 and 6.0. The kinetic properties indicated that the immobilized enzyme had more affinity toward substrates than soluble enzyme. The soluble and immobilized enzymes had temperature optima at 30 and 40°C and were stable up to 40 and 50°C, respectively. The stability of HRP against metal ion inactivation was improved after immobilization. Immobilized HRP exhibited high resistance to proteolysis by trypsin. The immobilized HRP was more resistant to inactivation induced by urea, Triton X-100, and organic solvents compared to its soluble counterpart. The immobilized HRP showed very high yield of immobilization and markedly high stabilization against several forms of denaturants that offer potential for several applications.  相似文献   

5.
Glucose oxidase (GOD) and Horseradish peroxidase (HRP) were covalently coupled to alkylamine controlled pore glass by means of glutaraldehyde. About 700-800 U/g of immobilized GOD and 300-400 U/g of immobilized HRP were obtained. Some factors of affecting enzyme immobilization were discussed. The immobilized enzymes were packed into a plastic tube and used in flow-injection analysis (FIA) for glucose in serum. A good linearity range was observed for this immobilized enzyme system at 20 mg/mL to 1000 mg/dL D-glucose, the recovery was 95.4-103.5%, the within-batch imprecision was 0.8-2.2%, and the between-batch imprecision was 2.2-4.2%. More than 100 samples were measured within an hour. One enzyme column with five units of immobilized GOD and HRP, applied for 50 assays/d, has been used for more than 2 mo.  相似文献   

6.
用魔芋多糖(KGM)将辣根过氧化物酶(HRP)固定在玻碳电极(GCE)表面, 制备了HRP-KGM膜修饰电极. 在乙醇等亲水性有机溶剂与水的混合溶液中, 包埋在KGM中的HRP 可以与电极发生直接电子传递, 且能催化还原过氧化氢、氢过氧化异丙基苯、氢过氧化叔丁基、过氧化丁酮等过氧化物. HRP-KGM膜修饰电极具有较好的稳定性和重现性, 可用于这些物质的定量检测.  相似文献   

7.
朱亚琦  武海  刘辉  马洁 《电化学》2007,13(2):140-144
将辣根过氧化物酶(HRP)固定在二氧化钛(TiO2)纳米颗粒或纳米管修饰玻碳电极(GC)上,形成纳米TiO2微粒/HRP修饰GC电极和TiO2纳米管/HRP修饰GC电极.比较了HRP在纳米TiO2微粒、TiO2纳米管电极上的直接电子转移反应.实验表明,HRP在TiO2纳米管电极表面更能有效地促进它的电活性中心发生电子交换反应.此外,还测定了HRP标记抗体的电化学性能,为抗原抗体免疫反应信号的选择提供了参考依据.  相似文献   

8.
HRP在大孔笼状介孔分子筛FDU-12上的固定及直接电化学   总被引:2,自引:0,他引:2  
用吸附的方法将辣根过氧化物酶(HRP)固定到三维笼状介孔分子筛FDU-12中, 傅立叶变换红外光谱(FTIR)和电化学交流阻抗谱结果表明, 固定后的HRP没有变性, 并表现出良好的直接电化学性质, 其式量电位(E0')为-0.325 V, 在40-300 mV·s-1范围内, 它不随扫描速率变化而变化. 电化学反应速率常数(ks)为1.200 s-1. 固定后的HRP对H2O2有稳定的电催化活性, 该固定酶的方法具有简单、易操作和电极稳定性良好等优点, 可用于获得其他酶或氧化还原蛋白质的直接电子转移以及第三代生物传感器电极的制备.  相似文献   

9.
Dielectrophoresis (DEP) is an AC electrokinetic effect mainly used to manipulate cells. Smaller particles, like virions, antibodies, enzymes, and even dye molecules can be immobilized by DEP as well. In principle, it was shown that enzymes are active after immobilization by DEP, but no quantification of the retained activity was reported so far. In this study, the activity of the enzyme horseradish peroxidase (HRP) is quantified after immobilization by DEP. For this, HRP is immobilized on regular arrays of titanium nitride ring electrodes of 500 nm diameter and 20 nm widths. The activity of HRP on the electrode chip is measured with a limit of detection of 60 fg HRP by observing the enzymatic turnover of Amplex Red and H2O2 to fluorescent resorufin by fluorescence microscopy. The initial activity of the permanently immobilized HRP equals up to 45% of the activity that can be expected for an ideal monolayer of HRP molecules on all electrodes of the array. Localization of the immobilizate on the electrodes is accomplished by staining with the fluorescent product of the enzyme reaction. The high residual activity of enzymes after AC field induced immobilization shows the method's suitability for biosensing and research applications.  相似文献   

10.
磁性固定化酶处理含酚废水的研究   总被引:24,自引:0,他引:24  
研究了磁性壳聚糖微球(磁性CS-M)及壳聚糖微球(CS-M)固定化辣根过氧化物酶(HRP)对模拟含酚废水的催化效果,探讨了反应时间、酶活力、H2O2浓度及酚浓度对反应的影响。对均相与非均相酶处理酚效果进行比较,显示固定化酶处理含酚废水具有很大的优越性,且磁性酶的效果最佳。  相似文献   

11.
《Electroanalysis》2006,18(22):2194-2201
A new amperometric immunobiosensor for carcinoembryonic antigen (CEA) determination in human serum was developed via encapsulation of horseradish peroxidase‐labeled carcinoembryonic antibody (HRP‐anti‐CEA) in a gold nanoparticles/DNA composite architecture. The presences of gold nanoparticles provided a congenial microenvironment for the immobilized biomolecules and decreased the electron transfer impedance, leading to a direct electrochemical behavior of the immobilized HRP. The formation of the antibody–antigen complex by a simple one‐step immunoreaction between the immobilized HRP‐anti‐CEA and CEA in sample solution introduced a barrier of direct electrical communication between the immobilized HRP and the gold electrode surface. Under optimal conditions, the current change obtained from the labeled HRP relative to H2O2 system was proportional to the CEA concentration in two linear ranges from 0.5 to 15 ng/mL and 15 to 300 ng/mL with a detection limit of 0.1 ng/mL (at 3δ). The precision and reproducibility are acceptable with the intraassay CV of 6.3% and 4.7% at 8 and 60 ng/mL CEA, respectively. The storage stability of the proposed immunosensor is acceptable in a pH 7.0 PBS at 4 °C for 9 days. Moreover, the proposed immunosensors were used to analyze CEA in human serum specimens. Analytical results of clinical samples show the developed immunoassay has a promising alternative approach for detecting CEA in the clinical diagnosis.  相似文献   

12.
In this work the radiation polymerization of N-isopropylacrylamide (NIPAAM) in aqueous solutions has been carried out and a water-soluble, temperature sensitive polymer and copolymer were obtained by using γ-rays from Co-60 source at room temperature. We have gained the optimum dose and dose—rate of radiation synthesis of linear polyNIPAAM through determining conversion yield and viscosity. In order to immobilize protein (BSA) and enzyme (HRP) into this water-soluble polymer, we prepared an activated copolymer, poly ( N-isopropylacrylamide-co-N-acryloxysuccinimide). The BSA and HRP has been immobilized onto the activated copolymer. The BSA (HRP) / copolymer conjugates still kept the original thermally sensitive properties of the linear polyNIPAAM. The conjugation yield of BSA to the activated copolymer decreased with increasing of dose. The thermal stability of the immobilized HRP was stable at 0 °C for a long time and has, at least, 4 days stability at room temperature. Immobilized HRP activity was lowered when the temperature was raised above its LCST. This phenomenon was reversible and the immobilized HRP regained activity below its LCST. The optimum pH of the immobilized HRP shifted from ca.5 upward to ca.7.  相似文献   

13.
《Electroanalysis》2006,18(15):1505-1510
A highly sensitive, fast and stable conductometric immunosensor for determination of interleukin‐6 (IL6) in humans is developed by encapsulation of horseradish peroxidase‐labeled interleukin‐6 antibody (HRP‐anti‐IL6) in poly(amidoamine) fourth‐generation dendrimer (dendrimer) and colloidal gold (nanogold) modified composite architecture. The presences of nanogold and dendrimer provided a congenial microenvironment for the immobilized biomolecules and decreased the electron transfer impedance, leading to a direct electrochemical behavior of the immobilized HRP. The formation of the antibody‐antigen complex by a simple one‐step immunoreaction between the immobilized HRP‐anti‐IL6 and IL6 in sample solution introduced a barrier of direct electrical communication between the immobilized HRP and the gold electrode surface, thus local conductivity variations could be detected by the HRP electrocatalytic reaction in 0.02 M phosphate buffer solution (pH 7.0) containing 50 μM H2O2, 0.01 M KI and 0.15 M NaC1. Under optimal conditions, the proposed immunosensor exhibited a good conductometric response to IL6 in a linear range from 30 to 300 pg/mL with a relatively low detection limit of 10 pg/mL at 3δ. The precision and reproducibility are acceptable with the intra‐assay CV of 7.3% and 5.6% at 100 and 200 pg/mL IL6, respectively. The storage stability of the proposed immunosensor is acceptable in a pH 7.0 PBS at 4 °C for 8 days. Importantly, the proposed methodology could be extended to the detection of other antigens or biocompounds.  相似文献   

14.
Ran Q  Peng R  Liang C  Ye S  Xian Y  Zhang W  Jin L 《Analytica chimica acta》2011,697(1-2):27-31
In this paper, a simple two-step approach for redox protein immobilization was introduced. Firstly, alkynyl-terminated film was formed on electrode surface by electrochemical reduction of 4-ethylnylphenyl (4-EP) diazonium compound. Then, horseradish peroxidase (HRP) modified with azido group was covalently immobilized onto the electrografted film via click reaction. Reflection absorption infrared (RAIR) spectroscopy and electrochemical methods were used to characterize the modification process. The results indicate that HRP retains its native structure and shows fast direct electron transfer. Moreover, the immobilized HRP shows excellent electrocatalytic reduction activity toward H(2)O(2) with a linear range of 5.0×10(-6) to 9.3×10(-4) mol L(-1).  相似文献   

15.
We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)–magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2O2, producing free radicals. The phenoxy radicals react with each other in a non‐enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP–magnetic nanoparticle hybrids are supported on micron‐scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes.  相似文献   

16.
A hydrophilic polyacrylonitrile (PAN) flat sheet membrane was aminated (8.5 μmol of NH2/mg of dry support) for covalent binding of horseradish peroxidase (HRP), mediated by the soluble carbodiimide 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). Silica microbeads derivatized by silanization, to yield an aminated support, and commercial aminated glass microbeads were also coupled to HRP with EDC or activated with glutaraldehyde. The immobilized enzyme activities were determined in a batch enzyme reactor with an external loop, the highest specific immobilized HRP activity being obtained on the glass support (55.8U/mg of protein). Continuous operational stability studies showed that hydrophilic PAN membrane led to the highest retention of HRP activity after an overall period of 35 h, with a normalized productivity of 59.5 μmol of H2O2 reduced/(h·Uimmob HRP).  相似文献   

17.
In this study, we use the quartz crystal microbalance with dissipation monitoring (QCM-D) to study the immobilization of the enzyme horseradish peroxidase (HRP) on poly(ethylene-co-acrylic acid) (PEAA) films. The surface polarity of spin-coated PEAA films was varied by heat treatments in air or in a 30% NaOH aqueous solution leading to COOH-depleted or COOH-enriched surfaces, respectively. Two reaction schemes, direct adsorption and amine coupling, were employed for HRP immobilization on the two surfaces. The shifts in frequency and dissipation, Deltaf and DeltaD, measured by QCM-D and the ratio DeltaD/Deltaf were used to evaluate the binding amount and the conformation of the adsorbed enzyme. It is found that HRP immobilized via covalent linkages forms rigid and little dissipative films. In contrast, directly adsorbed HRP films exhibit a highly dissipative structure. HRP-catalyzed oxidation of the 4-chloro-1-naphthol in the presence of H(2)O(2) was used to characterize the catalytic activity of the HRP films. The results show that the enzymatic activity of the covalently immobilized HRP tends to be higher.  相似文献   

18.
A novel, biocompatible, thermally steady, and nontoxic zirconia enhanced grafted collagen tri-helix scaffold was prepared on a graphite electrode. This scaffold provided a microenvironment for loading biomolecules and helped to retain their natural structure. UV-vis spectroscopy and scanning electron microscopy were used to characterize the scaffold and the structure of immobilized biomolecules. Using horseradish peroxidase (HRP) as an example, this scaffold accelerated its electron transfer and led to its direct electrochemical behavior with a good thermal stability up to 80 degrees C. The surface electron-transfer rate constant of the immobilized HRP was (5.55 +/- 0.43) s(-)(1) in 0.1 M pH 7.0 PBS at 18 degrees C. The immobilized HRP showed an electrocatalytic activity to the reduction of hydrogen peroxide (H(2)O(2)) without aid of an electron mediator. The linear response range of the biosensor for H(2)O(2) was from 1.0 to 73.0 microM with a correlation coefficient of 0.999 (n = 14), a limit of detection down to 0.25 microM and an apparent Michaelis-Menten constant of (0.28 +/- 0.02) mM. The biosensor exhibited high sensitivity, acceptable stability, and reproducibility. The ZrO(2) grafted collagen provided an excellent matrix for protein immobilization and biosensor preparation.  相似文献   

19.
陈红  吴辉煌 《化学学报》1996,54(9):882-887
用交联法制备辣根过氧化物酶(HRP)电极, 在1,4-二氧六环介质中研究其电化学行为。实验表明, 固定化的HRP在有机相中仍保持活性并可与电极进行直接电子传递, 因而能在没有其它电子传递体存在的条件下催化H~2O~2的电化学还原反应。当亚铁氰化物与酶共修饰至电极上之后, 它起着电子传递体的作用, 使HRP电极的性能大为改善。根据不同条件下得到的动力学参数, 讨论了影响酶电极性能的因素。  相似文献   

20.
碳纳米管促进氧化还原蛋白质和酶的直接电子转移   总被引:7,自引:1,他引:6  
蔡称心  陈静 《电化学》2004,10(2):159-167
将血红蛋白(Hb)、辣根过氧化物酶(HRP)和葡萄糖氧化酶(GOx)分别固定在经碳纳米管修饰的玻碳电极(CNT/GC)上,制成Hb CNT/GC、HRP CNT/GC和GOx CNT/GC电极.Hb、HRP和GOx在CNT/GC电极表面均能发生有效和稳定的直接电子转移反应,其相应的循环伏安曲线均显示出一对几近对称的氧化还原峰;在60mV/s下,其式量电位E0'分别为-0.343V、-0.319V和-0.456V(vs.SCE,pH6.9),且不随扫速而变;以上三者在CNT/GC电极表面直接电子转移的表观速率常数ks依次为1.25±0.25、2.07±0.56和1.74±0.42s-1;根据式量电位E0'随缓冲溶液pH值的变化关系,确知在CNT/GC电极上,Hb或HRP发生的直接电化学遵从(1e+1H+)电极过程机理,而GOx发生的直接电化学反应则遵从(2e+2H+)机理.此外,固定在CNT/GC电极表面的Hb、HRP和GOx也同时表现出对各自底物的生物电催化活性.由本文制备的碳纳米管修饰电极及其固定生物蛋白质(酶)的方法具有简单、易于操作等优点,并可用于对其它生物氧化还原蛋白质和酶的直接电子转移测试.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号