首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CO(2) adsorption characteristics of prototypical poly(ethyleneimine)/silica composite adsorbents can be drastically enhanced by altering the acid/base properties of the oxide support via incorporation of Zr into the silica support. Introduction of an optimal amount of Zr resulted in a significant improvement in the CO(2) capacity and amine efficiency under dilute (simulated flue gas) and ultradilute (simulated ambient air) conditions. Adsorption experiments combined with detailed characterization by thermogravimetric analysis, temperature-programmed desorption, and in situ FT-IR spectroscopy clearly demonstrate a stabilizing effect of amphoteric Zr sites that enhances the adsorbent capacity, regenerability, and stability over continued recycling. It is suggested that the important role of the surface properties of the oxide support in these polymer/oxide composite adsorbents has been largely overlooked and that the properties may be even further enhanced in the future by tuning the acid/base properties of the support.  相似文献   

2.
The adsorption of CO2 on pore-expanded SBA-15 mesostructured silica functionalized with amino groups was studied. The synthesis of conventional SBA-15 was modified to obtain pore-expanded materials, with pore diameters from 11 to 15 nm. Post-synthesis functionalization treatments were carried out by grafting with diethylenetriamine (DT) and by impregnation with tetraethylenepentamine (TEPA) and polyethyleneimine (PEI). The adsorbents were characterized by X-ray diffraction, N2 adsorption–desorption at 77 K, elemental analysis and Transmission Electron Microscopy. CO2 capture was studied by using a volumetric adsorption technique at 45 °C. Consecutive adsorption–desorption experiments were also conducted to check the cyclic behaviour of adsorbents in CO2 capture. An improvement in CO2 adsorption capacity and efficiency of amino groups was found for pore-expanded SBA-15 impregnated materials in comparison with their counterparts prepared from conventional SBA-15 with smaller pore size. PEI and TEPA-based adsorbents reached significant CO2 uptakes at 45 °C and 1 bar (138 and 164 mg CO2/g, respectively), with high amine efficiencies (0.33 and 0.37 mol CO2/mol N), due to the positive effect of the larger pore diameter in the diffusion and accessibility of organic groups. Pore-expanded SBA-15 samples grafted with DT and impregnated with PEI showed a good stability after several adsorption–desorption cycles of pure CO2. PEI-impregnated adsorbent was tested in a fixed bed reactor with a diluted gas mixture containing 15 % CO2, 5 % O2, 80 % Ar and water (45 °C, 1 bar). A noteworthy adsorption capacity of 171 mg CO2/g was obtained in these conditions, which simulate flue gas after the desulphurization step in a thermal power plant.  相似文献   

3.
Airborne formaldehyde, which is a highly problematic volatile organic compound (VOC) pollutant, is adsorbed by polymeric amine‐incorporated silicas (aminosilicas), and the factors that affect the adsorption performance are systematically investigated. Three different types of polymeric amines 1) poly(ethyleneimine) branched (PEIBR); 2) poly(ethyleneimine) linear (PEILI); and 3) poly(allylamine) (PAA) are impregnated into two types of porous silicas [SBA‐15 and mesocellular foam (MCF) silicas] with systematic changes of the amine loadings. The adsorption results demonstrate that the adsorption capacity increases along with the amine loading until the polymeric amines completely fill the silica pores. This results in the MCF silica, which has a larger pore volume and hence can accommodate more polymeric amine before completely filling the pore, giving materials that adsorb more formaldehyde, with the largest adsorption capacity, q, of up to 5.7 mmolHCHO g?1 among the samples studied herein. Of the three different types of polymers, PAA, comprised of 100 % primary amines, showed the highest amine efficiency μ (mmolHCHO/mmolN) for capturing formaldehyde. The chemical structures of the adsorbed formaldehyde are analyzed by 13C cross‐polarization magic‐angle spinning (CP‐MAS) NMR, and it is demonstrated that the adsorbed formaldehyde is chemically attached to the aminosilica surface, forming hemiaminal and imine species. Because the chemical adsorption of formaldehyde forms covalent bonds, it is not desorbed from the aminosilicas below 130 °C based on temperature‐programed‐desorption (TPD) analysis. The high formaldehyde‐adsorption capacity and stability of the trapped formaldehyde on the amine surface in this study reveal the potential utility of aminosilicas as formaldehyde abatement materials.  相似文献   

4.
Three different aminosilanes ((3-aminopropyl)trimethoxysilane (1NS), N-[3-(trimethoxysilyl) propyl]ethylenediamine (2NS), N1-(3-trimethoxysilylpropyl)diethylenetriamine (3NS)) were grafted covalently inside nanoporous silica (NPS-1) with a large surface area to prepare CO2 adsorbents. The prepared CO2 sorbents were evaluated for their CO2 sorption capacity, kinetic behavior, temperature programmed desorption (TPD) and textural properties. Grafting efficiency of 1NS was better due to the smaller molecular size compared to 2NS and 3NS, which are difficult to react with the hydroxyl group of the silica surface due to steric hindrance. The highest adsorption capacity of 7.0 wt% was observed for the 2NS/NPS-1 adsorbent, followed by 5.2 wt% for 1NS/NPS-1, then 5.0 wt% for 3NS/NPS-1. The adsorption capacity of 2NS/NPS-1 was highest at 30 °C, and it gradually decreased as the adsorption temperature increased. TPD analysis showed that the reaction of primary amine of 2NS with CO2 inside the nanoporous silica could form less thermally stable carbamic acid and carbamate compared to 1NS and 3NS.  相似文献   

5.
A carbon dioxide imprinted solid amine adsorbent (IPEIA‐R) with polyethylenimine (PEI) as a skeleton was conveniently prepared by using glutaraldehyde to cross‐link carbon dioxide‐preadsorbed PEI. As confirmed by FTIR, FT‐Raman, and 13C NMR spectroscopy, CO2 preadsorbed on PEI could occupy the reactive sites of amino groups and act as a template for imprinting in the cross‐linking process. The imino groups formed from the cross‐linking reaction between glutaraldehyde and PEI could be reduced by NaBH4 to form CO2‐adsorbable amino groups. The adsorption results indicated that CO2 imprinting and reduction of imino groups by NaBH4 endowed the adsorbent with a higher CO2 adsorption capacity. Compared with PEI‐supported mesoporous adsorbents, the solid amine adsorbent with PEI as a skeleton can avoid serious pore blockage and CO2 diffusion resistance, even with a high amine content. The solid amine adsorbent with PEI as a skeleton showed a remarkable CO2 adsorption capacity (8.56 mmol g?1) in the presence of water at 25 °C, owing to the high amine content and good swelling properties. It also showed promising regeneration performance and could maintain almost the same CO2 adsorption capacity after 15 adsorption–desorption cycles.  相似文献   

6.
A new porous organic polymer, SNU‐C1 , incorporating two different CO2‐attracting groups, namely, carboxy and triazole groups, has been synthesized. By activating SNU‐C1 with two different methods, vacuum drying and supercritical‐CO2 treatment, the guest‐free phases, SNU‐C1‐va and SNU‐C1‐sca , respectively, were obtained. Brunauer–Emmett–Teller (BET) surface areas of SNU‐C1‐va and SNU‐C1‐sca are 595 and 830 m2g?1, respectively, as estimated by the N2‐adsorption isotherms at 77 K. At 298 K and 1 atm, SNU‐C1‐va and SNU‐C1‐sca show high CO2 uptakes, 2.31 mmol g?1 and 3.14 mmol g?1, respectively, the high level being due to the presence of abundant polar groups (carboxy and triazole) exposed on the pore surfaces. Five separation parameters for flue gas and landfill gas in vacuum‐swing adsorption were calculated from single‐component gas‐sorption isotherms by using the ideal adsorbed solution theory (IAST). The data reveal excellent CO2‐separation abilities of SNU‐C1‐va and SNU‐C1‐sca , namely high CO2‐uptake capacity, high selectivity, and high regenerability. The gas‐cycling experiments for the materials and the water‐treated samples, experiments that involved treating the samples with a CO2‐N2 gas mixture (15:85, v/v) followed by a pure N2 purge, further verified the high regenerability and water stability. The results suggest that these materials have great potential applications in CO2 separation.  相似文献   

7.
《中国化学会会志》2017,64(9):1041-1047
Activated carbons with a high mesoporous structure were prepared by a one‐stage KOH activation process without the assistance of templates and further used as adsorbents for CO2 capture. The physical and chemical properties as well as the pore structures of the resulting mesoporous carbons were characterized by N2 adsorption isotherms, scanning electron microscopy (SEM ), X‐ray diffraction (XRD ), Raman spectroscopy, and Fourier transform infrared (FTIR ) spectroscopy. The activated carbon showed greater specific surface area and mesopore volume as the activation temperature was increased up to 600°C, showing a uniform pore structure, great surface area (up to ~815 m2/g), and high mesopore ratio (~55%). The activated sample exhibited competitive CO2 adsorption capacities at 1 atm pressure, reaching 2.29 and 3.4 mmol/g at 25 and 0°C, respectively. This study highlights the potential of well‐designed mesoporous carbon as an adsorbent for CO2 removal and widespread gas adsorption applications.  相似文献   

8.
Global warming is considered as one of the great challenges of the twenty‐first century. Application of CO2 capture and storage technologies to flue gas is considered to be a useful method of lessening global warning. Highly porous carbon has played an important role in tackling energy and environmental problems. We attempted to synthesize a highly porous carbon adsorbent by carbonizing a highly crystalline metal–organic framework (MOF) without any carbon precursors and focused on the adsorption of CO2 and CH4 gases and CO2/CH4 selectivity at 298, 323 and 348 K using a volumetric apparatus. The MOF‐derived porous carbon (MDC) was prepared by direct carbonization of MOF‐199 as a template at 900 °C under nitrogen atmosphere. Amino‐impregnated MDC samples exhibited enhanced adsorption capacities by a combination of physical and chemical adsorption. Polyethyleneimine (PEI) was selected as the amine source, which was found to greatly enhance CO2 capture when supported on the porous carbon. Novel PEI‐impregnated MDC nanocomposites were synthesized by wetness impregnation and then characterized using various methods.  相似文献   

9.
ZSM-5 type zeolite with mesoporous structure was prepared and then amine-functionalized with tetraethylenepentamine (TEPA) by wet impregnation method to form a series of CO2 adsorbents (ZTx). The structural properties of ZSM-5 and ZTx were characterized by XRD, FTIR, TGA/DTG, nitrogen adsorption/desorption, SEM and EDX techniques. The adsorption capacity of the adsorbents with different amine loading was measured at a temperature from 40 to 100 °C and the adsorption capacity of ZT7 was 1.80 mmol/g at 100 °C. The adsorption process and mechanism were studied by fitting the experimental data used the three adsorption kinetic models, and a complex physical and chemical mixing process was produced as the amine entered the surface and pore size of the zeolite. The high adsorption selectivity at 10% CO2 concentration and the stability of the five adsorption desorption cycles indicated that ZT7 is a suitable and promising CO2 adsorbent for the purification of industrial flue gas.  相似文献   

10.
A simulation study was conducted on layered-bed pressure-swing adsorption, PSA, processes with adsorbents that differ in their adsorption properties. As an example, an oxygen, O2, vacuum-swing adsorption, VSA, process was analyzed to investigate relationships between process performance and adsorption properties of the adsorbents used. For two adsorbents with identical nitrogen-to-oxygen, N2/O2, selectivity but different N2 and O2 capacities, placing the high-capacity adsorbent at the product end and the low-capacity adsorbent at the feed end of the adsorption bed gives a better performance than the case of reversing layering of these adsorbents. However, for two adsorbents with different values of N2/O2 selectivity but identical N2 capacity, changing the bed-layer configuration does not show a significant difference in O2-VSA performance. The advantages of layering a high-capacity adsorbent on product end of the bed are demonstrated by an examination of the N2-loading difference in a VSA cycle. The modeling study also reveals an effect of cycle features (e.g., equalization step) on the effectiveness of using layered-bed configurations in VSA/PSA processes. It suggests that layering appropriately two adsorbents with different adsorption properties could result in better VSA/PSA-process performance than using a single-layer bed with either of the two adsorbents.  相似文献   

11.
A one-pot template-free route was developed for the synthesis of novel tetraethylenepentamine modified porous silica as CO2 adsorbents, the obtained materials were characterized by N2 adsorption/desorption, thermogravimetry, elemental analysis, Fourier transform infrared spectrometry,scanning electron microscopy and transmission electron microscopy. It was found that the amine species were inserted into the silica skeleton, which considerably enhanced their dispersion. Compared with similar materials derived from impregnation, the porous structure of the silica can be better reserved, leading to a promising CO2 adsorption capacity of 3.98 mmol CO2/g-adsorbent and a fast adsorption kinetic in simulated flue gas at 348 K. The resulted adsorbents could also be easily regenerated and showed a good durability in multiple adsorption–desorption cycles. All these features make this method a promising option for the preparation of CO2 adsorbents.  相似文献   

12.
Industrial grade multi-walled carbon nanotubes (IG-MWCNTs) are a low-cost substitute for commercially purified multi-walled carbon nanotubes (P-MWCNTs). In this work, IG-MWCNTs were functionalized with tetraethylenepentamine (TEPA) for CO2 capture. The TEPA impregnated IG-MWCNTs were characterized with various experimental methods including N2 adsorption/desorption isotherms, elemental analysis, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis. Both the adsorption isotherms of IG-MWCNTs-n and the isosteric heats of different adsorption capacities were obtained from experiments. TEPA impregnated IG-MWCNTs were also shown to have high CO2 adsorption capacity comparable to that of TEPA impregnated P-MWCNTs. The adsorption capacity of IG-MWCNTs based adsorbents was in the range of 2.145 to 3.088 mmol/g, depending on adsorption temperatures. Having the advantages of low-cost and high adsorption capacity, TEPA impregnated IG-MWCNTs seem to be a promising adsorbent for CO2 capture from flue gas.  相似文献   

13.
《Chemphyschem》2003,4(5):466-473
The influence of potassium, in the submonolayer regime, on the adsorption and coadsorption of CO2 and H on a stepped copper surface, Cu(115), has been studied by photoelectron spectroscopy, temperature‐programmed desorption, and work‐function measurements. Based on the fast recording of C 1s and O 1s core‐level spectra, the uptake of CO2 on K/Cu(115) surfaces at 120 K has been followed in real time, and the different reaction products have been identified. The K 2p3/2 peak exhibits a chemical shift of ?0.4 eV with CO2 saturation, the C 1s peaks of the CO3 and the CO species show shifts of ?0.8 and ?0.5 eV, respectively, and the C 1s peak of the physisorbed CO2 exhibits no shift. The effects of gradually heating the CO2/K/Cu(115) surface include the desorption of physisorbed CO2 at 143 K; the desorption of CO at 193 K; the ordering of the CO3 species, and subsequently the dissociation of the carbonate with desorption at 520–700 K. Formate, HCOO?, was synthesized by the coadsorption of H and CO2 on the K/Cu(115) surface at 125 K. Formate formed exclusively for potassium coverages of less than 0.4 monolayer, whereas both formate and carbonate were formed at higher coverages. The desorption of formate‐derived CO2 took place in the temperature range 410–425 K and carbonate‐derived CO2 desorbed at 645–660 K, depending on the potassium coverage.  相似文献   

14.
《中国化学会会志》2018,65(9):1090-1097
Boronate‐affinity adsorbents have been regarded as favorable extraction adsorbents for the pretreatment of cis‐diol‐containing biomolecules owning to their specific selectivity, but most of them have low adsorption capacity and a tedious synthesis methods. In this study, a new boronate‐affinity material (PGMA@FPBA) with high adsorption capacity was synthesized via a “one‐pot” method based on a low‐cost commercial support. The PGMA@FPBA was characterized by Fourier transform infrared spectroscopy (FT‐IR), X‐ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and nitrogen adsorption/desorption measurements. The as‐prepared adsorbent showed good selectivity, high adsorption capacity (448 μmol/g for catechol), and fast adsorption equilibration (1 min) for cis‐diol‐containing biomolecules. Subsequently, as an example for application, the obtained PGMA@FPBA was used as a dispersive solid‐phase extraction (d‐SPE) adsorbent for enrichment of quercetin in red wine. The results indicated that the facile‐prepared boronate‐affinity adsorbent has great potential application for separation and enrichment of cis‐diol‐containing biomolecules in complex samples.  相似文献   

15.
Cu‐BTC–ethylenediamine (EDA)/polyethyleneimine (PEI) adsorbents were synthesized using a protophilic solvent‐assisted solvothermal method. EDA was introduced to enhance the degree of activation due to its lower boiling point allowing it to be removed easily compared with dimethylformamide. A contrast experiment was done by introducing PEI to the solvothermal solution considering its higher boiling point. Powder X‐ray diffraction, scanning electron microscopy and Raman spectroscopic characterizations were performed to investigate the effect of EDA/PEI on crystallinity and morphology of the adsorbents. 1H NMR characterization and elemental analysis were performed to study the removal rate of organic guest molecules and the degree of activation. Nitrogen physical adsorption and CO2 adsorption isotherms were used to measure the surface area and CO2 adsorption capacities. The CO2 adsorption mechanism of the synthesized adsorbents is mainly dependent on physisorption determined by surface area. Furthermore, open metal sites generated by the enhancement of degree of activation also promote the CO2 adsorption performance. Therefore, adsorbents synthesized using the protophilic solvent‐assisted solvothermal method exhibit excellent CO2 adsorption performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The oxidative degradation of CO2 adsorbents consisting of amine‐grafted pore‐expanded mesoporous MCM‐41 silica was investigated. The adsorbents were treated under flowing air at various temperatures, and the degree of deactivation was evaluated through the measurement of their CO2 adsorption capacity prior and subsequent to exposure to air. To decipher the chemical structure of surface species upon air‐deactivation of grafted amines, a solvent extraction procedure was developed using a deuterated basic solution. The obtained solutions were analyzed by a variety of 1D and 2D NMR spectroscopy techniques, such as 29Si, 13C, 1H, [1H,15N] HMBC, [1H,13C] HMQC, COSY and DOSY. The surface species generated by oxidative degradation of amine‐grafted silica were found to contain functional groups such as imine, amide and carboxylic groups. Several structural units were conclusively demonstrated.  相似文献   

17.
《先进技术聚合物》2018,29(1):319-328
The equilibrium adsorption isotherms of carbon dioxide and nitrogen on the nitrogen doped activated carbon (NAC) prepared by the chemical activation of a pine cone‐based char/polyaniline composite were measured using a volumetric technique. CO2 and N2 adsorption experiments were done at three different temperatures (298, 308, and 318 K) and pressures up to 16 bar, and correlated with the Langmuir, Freundlich, and Sips models. The Sips isotherm model presented the best fit to the experimental data. The N‐doped adsorbent showed CO2 and N2 adsorption capacity of 3.96 mmol·g−1 and 0.86 mmol·g−1, respectively, at 298 K and 1 bar. The selectivity predicted by ideal adsorbed solution theory (IAST) model was achieved 47.17 for NAC at 1 bar and yN2 = 0.85 which is a composition similar to flue gas. The results showed that NAC adsorbent has a high CO2‐over‐N2 selectivity in a binary mixture. The relatively fast sorption rate of CO2 on NAC compared to N2 indicates the stronger affinity between CO2 and amine groups. The isosteric heat of adsorption of CO2 by the NAC demonstrated the physico‐chemical adsorption of CO2 on the adsorbent surface. These data showed that prepared NAC could be successfully applied in separation of CO2 from N2.  相似文献   

18.
In this study, graphene‐encapsulated silica was synthesized by a hydrothermal reduction strategy. The presence of silica in graphene was identified by Fourier‐transform infrared spectrometry, X‐ray diffraction and scanning electron microscopy. The graphene‐encapsulated silica subsequently was used as adsorbent for matrix solid‐phase dispersion extraction of poly‐methoxylated flavonoids from the dried leaves of Murraya panaculata (L.) Jack. Compared with the other adsorbents (graphene, silica gel, C18 silica, neutral alumina, diatomaceous earth) and without any adsorbents, better results were obtained. Then a method for analysis of poly‐methoxylated flavonoids was established by coupling matrix solid‐phase dispersion extraction with ultra high performance liquid chromatography and UV detection. Compared with reflux extraction and ultrasonic extraction, the proposed method is quicker, more efficient and more environmental protection. Less than 10 min is needed from extraction to detection.  相似文献   

19.
Covalent organic frameworks are a new class of crystalline organic polymers possessing a high surface area and ordered pores. Judicious selection of building blocks leads to strategic heteroatom inclusion into the COF structure. Owing to their high surface area, exceptional stability and molecular tunability, COFs are adopted for various potential applications. The heteroatoms lining in the pores of COF favor synergistic host–guest interaction to enhance a targeted property. In this report, we have synthesized a resorcinol‐phenylenediamine‐based COF which selectively adsorbs CO2 into its micropores (12 Å). The heat of adsorption value (32 kJ mol?1) obtained from the virial model at zero‐loading of CO2 indicates its favorable interaction with the framework. Furthermore, we have anchored small‐sized Ag nanoparticles (≈4–5 nm) on the COF and used the composite for chemical fixation of CO2 to alkylidene cyclic carbonates by reacting with propargyl alcohols under ambient conditions. Ag@COF catalyzes the reaction selectively with an excellent yield of 90 %. Recyclability of the catalyst has been demonstrated up to five consecutive cycles. The post‐catalysis characterizations reveal the integrity of the catalyst even after five reaction cycles. This study emphasizes the ability of COF for simultaneous adsorption and chemical fixation of CO2 into corresponding cyclic carbonates.  相似文献   

20.
This Concept examines strategies to design advanced polymers with high CO2 permeability and high CO2/N2 selectivity, which are the key to the success of membrane technology for CO2 capture from fossil fuel‐fired power plants. Specifically, polymers with enhanced CO2 solubility and thus CO2/N2 selectivity are designed by incorporating CO2‐philic groups in polymers such as poly(ethylene oxide)‐containing polymers and poly(ionic liquids); polymers with enhanced CO2 diffusivity and thus CO2 permeability are designed with contorted rigid polymer chains to obtain high free volume, such as polymers with intrinsic microporosity and thermally rearranged polymers. The underlying rationales for materials design are discussed and polymers with promising CO2/N2 separation properties for CO2 capture from flue gas are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号