共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents analytical solutions of the three‐dimensional groundwater flow to a well in leaky confined and leaky water table wedge‐shaped aquifers. Leaky wedge‐shaped aquifers with and without storage in the aquitard are considered, and both transient and steady‐state drawdown solutions are derived. Unlike the previous solutions of the wedge‐shaped aquifers, the leakages from aquitard are considered in these solutions and unlike similar previous work for leaky aquifers, leakage from aquitards and from the water table are treated as the lower and upper boundary conditions. A special form of finite Fourier transforms is used to transform the z‐coordinate in deriving the solutions. The leakage induced by a partially penetrating pumping well in a wedge‐shaped aquifer depends on aquitard hydraulic parameters, the wedge‐shaped aquifer parameters, as well as the pumping well parameters. We calculate lateral boundary dimensionless flux at a representative line and investigate its sensitivity to the aquitard hydraulic parameters. We also investigate the effects of wedge angle, partial penetration, screen location and piezometer location on the steady‐state dimensionless drawdown for different leakage parameters. Results of our study are presented in the form of dimensionless flux‐dimensionless time and dimensionless drawdown‐leakage parameter type curves. The results are useful for evaluating the relative role of lateral wedge boundaries and leakage source on flow in wedge‐shaped aquifers. This is very useful for water management problems and for assessing groundwater pollution. The presented analytical solutions can also be used in parameter identification and in calculating stream depletion rate and volume. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
2.
Alluvial fans are potential sites of potable groundwater in many parts of the world. Characteristics of alluvial fans sediments are changed radially from high energy coarse-grained deposition near the apex to low energy fine-grained deposition downstream so that patchy wedge-shaped aquifers with radial heterogeneity are formed. The hydraulic parameters of the aquifers (e.g. hydraulic conductivity and specific storage) change in the same fashion. Analytical or semi-analytical solutions of the flow in wedge-shaped aquifers are available for homogeneous cases. In this paper we derive semi-analytical solutions of groundwater flow to a well in multi-zone wedge-shaped aquifers. Solutions are provided for three wedge boundary configurations namely: constant head–constant head wedge, constant head–barrier wedge and barrier–barrier wedge. Derivation involves the use of integral transforms methods. The effect of heterogeneity ratios of zones on the response of the aquifer is examined. The results are presented in form of drawdown and drawdown derivative type curves. Heterogeneity has a significant effect on over all response of the pumped aquifer. Solutions help understanding the behavior of heterogeneous multi-zone aquifers for sustainable development of the groundwater resources in alluvial fans. 相似文献
3.
In the simulation‐optimization approach, a coupled optimization and groundwater flow/transport model is used to solve groundwater management problems. The efficiency of the numerical method, which is used to simulate the groundwater flow, is one the major reason to obtain the best solution for a management problem. This study was carried out to examine the advantages of the analytic element method (AEM) in the simulation‐optimization approach, for the solution of groundwater management problems. For this study, the AEM and finite difference method (FDM) based flow models were developed and coupled with the particle swarm optimization (PSO)‐based optimization model. Furthermore, the AEM‐PSO and FDM‐PSO models developed were applied in hypothetical as well as real field conditions to address groundwater management problems and the results were compared. For the real field situation, the models developed were applied to the Dore River basin in France to minimize the installation and operational cost of new pumping wells taking the location and discharge of the pumping wells as decision variables. The constraints of the problem were identified with the help of stakeholders and water authority officials. The AEM flow model was developed to facilitate the management model particularly when at each iteration, the optimization model calls for a simulation model to calculate the values of groundwater heads. The results show that, at some points, the AEM‐PSO model is efficient in identifying the optimal location of wells and consequently results in optimal costs, sometimes difficult when using the FDM. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
Groundwater management involves conflicting objectives as maximization of discharge contradicts the criteria of minimum pumping cost and minimum piping cost. In addition, available data contains uncertainties such as market fluctuations, variations in water levels of wells and variations of ground water policies. A fuzzy model is to be evolved to tackle the uncertainties, and a multiobjective optimization is to be conducted to simultaneously satisfy the contradicting objectives. Towards this end, a multiobjective fuzzy optimization model is evolved. To get at the upper and lower bounds of the individual objectives, particle Swarm optimization (PSO) is adopted. The analytic element method (AEM) is employed to obtain the operating potentio metric head. In this study, a multiobjective fuzzy optimization model considering three conflicting objectives is developed using PSO and AEM methods for obtaining a sustainable groundwater management policy. The developed model is applied to a case study, and it is demonstrated that the compromise solution satisfies all the objectives with adequate levels of satisfaction. Sensitivity analysis is carried out by varying the parameters, and it is shown that the effect of any such variation is quite significant. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
5.
Kai‐Yuan Ke 《水文研究》2014,28(3):1409-1421
This research proposes a combination of SWAT and MODFLOW, MD‐SWAT‐MODFLOW, to address the multi‐aquifers condition in Choushui River alluvial fan, Taiwan. The natural recharge and unidentified pumping/recharge are separately estimated. The model identifies the monthly pumping/recharge rates in multi‐aquifers so that the daily streamflow can be simulated correctly. A multi‐aquifers condition means a subsurface formation composed of at least the unconfined aquifer, the confined aquifer, and an in‐between aquitard. In such a case, the variation of groundwater level is related to pumping/recharge activities in vertically adjacent aquifer and the river‐aquifer interaction. Both factors in turn affect the streamflow performance. Results show that MD‐SWAT‐MODFLOW performs better than SWAT alone in terms of simulated streamflow, especially during low flow period, when pumping/recharge rates are properly estimated. A sensitivity analysis of individual parameter suggests that the vertical leakance may be the most sensitive among all investigated MODFLOW parameters in terms of the estimated pumping/recharge among aquifers, and the Latin‐Hypercube‐One‐factor‐At‐a‐Time sensitivity analysis indicates that the hydraulic conductivity of channel is the most sensitive to the model performance. It also points out the necessity to simultaneously estimate pumping/recharge rates in multi‐aquifers. The estimated net pumping rate can be treated as a lower bound of the actual local pumping rate. As a whole, the model provides the spatio‐temporal groundwater use, which gives the authorities insights to manage groundwater resources. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
6.
We have developed a method for analytically solving the porous medium flow equation in many different geometries for horizontal (two‐dimensional), homogeneous and isotropic aquifers containing impermeable boundaries and any number of pumping or injection wells located at arbitrary positions within the system. Solutions and results are presented for rectangular and circular aquifers but the method presented here is easily extendible to many geometries. Results are also presented for systems where constant head boundary conditions can be emulated internal to the aquifer boundary. Recommendations for extensions of the present work are briefly discussed. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
7.
针对辽阳市中华大桥局部结构损伤对其承载力影响的问题,通过现场静力试验和损伤检测,得出了系统的现场数据,将该数据与桥梁破坏前的检测数据进行对比,确定结构的主要损伤为预应力T型主梁连接处的肋梁严重破损。用大型三维有限元软件ANSYS中的生死单元技术模拟破坏肋梁,建立了单跨损伤肋梁有限元数值模型,并将有限元数值分析结果与检测值相对比,验证了有限元模型的准确性。最后,采用钢筋焊接填筑混凝土进行补强,以外加钢板法加固损伤肋梁,并建立加固后的有限元模型,分析验证了该加固方法的有效性。 相似文献
8.
在有限元分析中,由于求解区域或边界的不规则,有限单元的划分会产生畸变单元。本文通过数值试验分析了有限单元畸变对动力有限元计算精度的影响,结果表明:长宽比畸变对动力有限元计算精度没有影响;当斜交角不小于30°时,斜交角对动力有限元计算精度的影响可忽略;锥度对动力有限元计算精度有影响,锥度越大,锥度对动力有限元计算精度的影响越大。 相似文献
9.
10.
Two linear-hysteretic-damping models that provide energy dissipation independent of the deformation frequency, are studied in this paper: a hysteretic Kelvin element and a hysteretic Maxwell element. Both models use the Hilbert transform and yield integro–differential equations for the equations of motion of structures when real-valued signals are utilized in the formulation. It is shown that the use of analytic (complex-valued) signals allows the transformation of these integro–differential equations into differential equations with analytic input signals and complex-valued coefficients. These differential equations show both stable and unstable poles. A technique for the solution of these differential equations is presented; it consists of a conventional modal decomposition of the state-space equations and the integration of the differential equations forward in time for the modal co-ordinates associated with stable poles, and backwards in time for the modal co-ordinates associated with unstable poles. Some numerical examples are presented to illustrate the characteristics of the models and the proposed analysis technique. 相似文献
11.
为实现垃圾填埋场渗滤液在地下含水层中动态扩散及污染层修复过程的实时监测,利用自行设计的三维电学观测系统开展了室内相关监测实验.实验表明渗滤液在含水层中的扩散过程会引起不同时期实测电剖面上低阻异常区的动态变化.对比分析这种变化特征可确定渗滤液扩散区的污染程度、扩散速度及扩散方向.在注水修复过程中,扩散区污染物含量的降低会引起对应区域实测视电阻率值的升高和异常区范围的变化.实验结果对于实现垃圾渗滤液污染地下含水层现状调查及动态监测具有重要意义. 相似文献
12.
详细介绍了瞬变电磁法正演计算的方法、现状和发展趋势.瞬变电磁法一维正演计算需要将电磁场从频率域转换至时间域,转换方法有三种,分别是Gaver-Stehfest算法、余弦变换和Guptasarma算法.在这三种方法中,使用较多的是Gaver-Stehfest算法和余弦变换,Gaver-Stehfest算法速度较快,但精度不及余弦变换.瞬变电磁法的数值模拟主要集中于2.5维和三维,使用的数值计算方法有积分方程法、有限差分法、有限单元法和SLDM法.积分方程法主要在三维数值模拟中使用,现已很少使用;有限差分法和有限单元法是目前瞬变电磁法2.5维和三维数值模拟的主要方法;SLDM法主要应用于三维数值模拟.我国瞬变电磁法正演计算成果主要集中在回线源激发的瞬变电磁场一维数值计算和利用有限单元法进行2.5维和三维数值模拟.瞬变电磁法正演计算的发展趋势有:数值算法的改进、提高计算效率和研究地形对瞬变电磁场的影响规律. 相似文献
13.
Empirical mode decomposition aims to decompose the input signal into a small number of components named intrinsic mode functions with slowly varying amplitudes and frequencies. In spite of its simplicity and usefulness, however, empirical mode decomposition lacks solid mathematical foundation. In this paper, we describe a method to extract the intrinsic mode functions of the input signal using non‐stationary Prony method. The proposed method captures the philosophy of the empirical mode decomposition but uses a different method to compute the intrinsic mode functions. Having the intrinsic mode functions obtained, we then compute the spectrum of the input signal using Hilbert transform. Synthetic and field data validate that the proposed method can correctly compute the spectrum of the input signal and could be used in seismic data analysis to facilitate interpretation. 相似文献
14.
S. H. Ju 《地震工程与结构动力学》2003,32(9):1431-1442
This paper discusses how to use the three‐dimensional (3D) time‐domain finite‐element method incorporating the least‐squares method to calculate the equivalent foundation mass, damping and stiffness matrices. Numerical simulations indicate that the accuracy of these equivalent matrices is acceptable when the applied harmonic force of 1+sine is used. Moreover, the accuracy of the least‐squares method using the 1+sine force is not sensitive to the first time step for inclusion of data. Since the finite‐element method can model problems flexibly, the equivalent mass, damping and stiffness matrices of very complicated soil profiles and foundations can be established without difficulty using this least‐squares method. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
15.
To take into account the variability of the medium through which the groundwater flow takes place, we presented the groundwater flow equation within a confined aquifer with prolate coordinates. The new equation is a perturbed singular equation. The perturbed parameters is introduced and can be used as accurately replicate the variability of the aquifer from one point to another. When the perturbed parameter tends to zero, we recover the Theis equation. We solved analytically and iteratively the new equation. We compared the obtained solution with experimental observed data together with existing solutions. The comparison shows that the modified equation predicts more accurately the physical problem than the existing model. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
16.
This study suggested a numerical model using the Tabu search algorithm along with the Adjoint State method to identify the hydrogeological characteristics of an anisotropic groundwater aquifer. The Tabu search algorithm was applied to identify the anisotropic transmissivity components to avoid a local optimum. Then, the Adjoint State method was used to calculate the sensitivity of the parameters in order to increase the efficiency of the optimization. For an anisotropic and homogeneous aquifer, results showed that the optimal procedure presented combining the Tabu search algorithm and the Adjoint State method might successfully identify the values of the transmissivity components. If the duration of the pumping test was long enough (12‐h pumping test), the value of the transmissivity components could be optimized with type‐curve, straight‐line, and Tabu search methods, along with the Adjoint State methods. If the duration of the pumping test was short (0·5‐h pumping test), the Tabu search method, along with the Adjoint State method proposed herein, might successfully optimize the transmissivity components. For an anisotropic but heterogeneous aquifer, results showed that the suggested optimal procedure still successfully identified the values of the transmissivity components. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
17.
Yuan Yuan Jianke Qiang Jingtian Tang Zhengyong Ren Xiao Xiao 《Geophysical Prospecting》2016,64(3):767-779
To reduce the numerical errors arising from the improper enforcement of the artificial boundary conditions on the distant surface that encloses the underground part of the subsurface, we present a finite‐element–infinite‐element coupled method to significantly reduce the computation time and memory cost in the 2.5D direct‐current resistivity inversion. We first present the boundary value problem of the secondary potential. Then, a new type of infinite element is analysed and applied to replace the conventionally used mixed boundary condition on the distant boundary. In the internal domain, a standard finite‐element method is used to derive the final system of linear equations. With a novel shape function for infinite elements at the subsurface boundary, the final system matrix is sparse, symmetric, and independent of source electrodes. Through lower upper decomposition, the multi‐pole potentials can be swiftly obtained by simple back‐substitutions. We embed the newly developed forward solution to the inversion procedure. To compute the sensitivity matrix, we adopt the efficient adjoint equation approach to further reduce the computation cost. Finally, several synthetic examples are tested to show the efficiency of inversion. 相似文献
18.
A boundary element formulation having discontinuous curved quadratic elements is presented for 2D elastodynamics. The first fundamental solution for static case is subtracted from and added to the first fundamental solution for dynamic case. As both kernels have the same order of singularity, the integral involving the regular expression arising from the subtraction can be calculated. matrix is calculated by employing the well-known rigid-body motion technique. The formulation is performed in Fourier transform space. Based on the formulation presented in this study, a general purpose computer program is developed for elastic or visco-elastic 2D elastodynamic problems. The program performs the analysis in Fourier transform space and can also be used for static analysis by assigning a very small value close to zero for the frequency. The results of some elastodynamic and dynamic soil–structure interaction problems obtained using the present study are compared with those in the literature. 相似文献
19.
A Laplace-transform analytic element method (LT-AEM) is described for the solution of transient flow problems in porous media. Following Laplace transformation of the original flow problem, the analytic element method (AEM) is used to solve the resultant time-independent modified Helmholtz equation, and the solution is inverted numerically back into the time domain. The solution is entirely general, retaining the mathematical elegance and computational efficiency of the AEM while being amenable to parallel computation. It is especially well suited for problems in which a solution is required at a limited number of points in space–time, and for problems involving materials with sharply contrasting hydraulic properties. We illustrate the LT-AEM on transient flow through a uniform confined aquifer with a circular inclusion of contrasting hydraulic conductivity and specific storage. Our results compare well with published analytical solutions in the special case of radial flow. 相似文献
20.
本用震源力学理论和方法研究了徐淮地区从1970年以来构造应力场的方向和强度的时空变化过程。结果表明:以唐山地震为分界线,本区的应力场P轴取向由震前平均61.8°变为震后平均77.7°。如果将本区以宿北断裂为界分为南区和北区两个部分,则北区的P轴取向从68.1°变71.2°,而南区的P轴取向由62.5°变到83.6°,南区的变化明显于北区。 相似文献