首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A series of 7‐fluorinated 7‐deazapurine 2′‐deoxyribonucleosides related to 2′‐deoxyadenosine, 2′‐deoxyxanthosine, and 2′‐deoxyisoguanosine as well as intermediates 4b – 7b, 8, 9b, 10b , and 17b were synthesized. The 7‐fluoro substituent was introduced in 2,6‐dichloro‐7‐deaza‐9H‐purine ( 11a ) with Selectfluor (Scheme 1). Apart from 2,6‐dichloro‐7‐fluoro‐7‐deaza‐9H‐purine ( 11b ), the 7‐chloro compound 11c was formed as by‐product. The mixture 11b / 11c was used for the glycosylation reaction; the separation of the 7‐fluoro from the 7‐chloro compound was performed on the level of the unprotected nucleosides. Other halogen substituents were introduced with N‐halogenosuccinimides ( 11a → 11c – 11e ). Nucleobase‐anion glycosylation afforded the nucleoside intermediates 13a – 13e (Scheme 2). The 7‐fluoro‐ and the 7‐chloro‐7‐deaza‐2′‐deoxyxanthosines, 5b and 5c , respectively, were obtained from the corresponding MeO compounds 17b and 17c , or 18 (Scheme 6). The 2′‐deoxyisoguanosine derivative 4b was prepared from 2‐chloro‐7‐fluoro‐7‐deaza‐2′‐deoxyadenosine 6b via a photochemically induced nucleophilic displacement reaction (Scheme 5). The pKa values of the halogenated nucleosides were determined (Table 3). 13C‐NMR Chemical‐shift dependencies of C(7), C(5), and C(8) were related to the electronegativity of the 7‐halogen substituents (Fig. 3). In aqueous solution, 7‐halogenated 2′‐deoxyribonucleosides show an approximately 70% S population (Fig. 2 and Table 1).  相似文献   

2.
The asymmetric hydroformylation of 2‐ and 3‐vinylfurans ( 2a and 2b , resp.) was investigated by using [Rh{(R,S)‐binaphos}] complexes as catalysts ((R,S)‐binaphos = (11bS)‐4‐{[1R)‐2′‐phosphino[1,1′‐binaphthalen]‐2‐yl]oxy}dinaphtho[2,1‐d:1′,2′‐f][1,3,2]dioxaphosphepin; 1 ). Hydroformylation of 2 gave isoaldehydes 3 in high regio‐ and enantioselectivities (Scheme 2 and Table). Reduction of the aldehydes 3 with NaBH4 successfully afforded the corresponding alcohols 5 without loss of enantiomeric purity (Scheme 3).  相似文献   

3.
We describe the synthesis of (5′S)‐5′‐C‐butylthymidine ( 5a ), of the (5′S)‐5′‐C‐butyl‐ and the (5′S)‐5′‐C‐isopentyl derivatives 16a and 16b of 2′‐deoxy‐5‐methylcytidine, as well as of the corresponding cyanoethyl phosphoramidites 9a , b and 14a , b , respectively. Starting from thymidin‐5′‐al 1 , the alkyl chain at C(5′) is introduced via Wittig chemistry to selectively yield the (Z)‐olefin derivatives 3a and 3b (Scheme 2). The secondary OH function at C(5′) is then introduced by epoxidation followed by regioselective reduction of the epoxy derivatives 4a and 4b with diisobutylaluminium hydride. In the latter step, a kinetic resolution of the diastereoisomer mixture 4a and 4b occurs, yielding the alkylated nucleoside 2a and 2b , respectively, with (5′S)‐configuration in high diastereoisomer purity (de=94%). The corresponding 2′‐deoxy‐5‐methylcytidine derivatives are obtained from the protected 5′‐alkylated thymidine derivatives 7a and 7b via known base interconversion processes in excellent yields (Scheme 3). Application of the same strategy to the purine nucleoside 2′‐deoxyadenine to obtain 5′‐C‐butyl‐2′‐deoxyadenosine 25 proved to be difficult due to the sensitivity of the purine base to hydride‐based reducing agents (Scheme 4).  相似文献   

4.
An easily available and efficient chiral N,N′‐dioxide–nickel(II) complex catalyst has been developed for the direct catalytic asymmetric aldol reaction of α‐isothiocyanato imide with aldehydes which produces the products in morderate to high yields (up to 98 %) with excellent diastereo‐ (up to >99:1 d.r.) and enantioselectivities (up to >99 % ee). A variety of aromatic, heteroaromatic, α,β‐unsaturated, and aliphatic aldehydes were found to be suitable substrates in the presence of 2.5 mol % L ‐proline‐derived N,Ndioxide L5 –nickel(II) complex. This process was air‐tolerant and easily manipulated with available reagents. Based on experimental investigations, a possible transition state has been proposed to explain the origin of reactivity and asymmetric inductivity.  相似文献   

5.
The synthesis of novel unsymmetrically 2,2‐disubstituted 2H‐azirin‐3‐amines with chiral auxiliary amino groups is described. Chromatographic separation of the mixture of diastereoisomers yielded (1′R,2S)‐ 2a , b and (1′R,2R)‐ 2a , b (c.f. Scheme 1 and Table 1), which are synthons for (S)‐ and (R)‐2‐methyltyrosine and 2‐methyl‐3′,4′‐dihydroxyphenylalanine. Another new synthon 2c , i.e., a synthon for 2‐(azidomethyl)alanine, was prepared but could not be separated into its pure diastereoisomers. The reaction of 2 with thiobenzoic acid, benzoic acid, and the amino acid Fmoc‐Val‐OH yielded the monothiodiamides 11 , the diamides 12 (cf. Scheme 3 and Table 3), and the dipeptides 13 (cf. Scheme 4 and Table 4), respectively. From 13 , each protecting group was removed selectively under standard conditions (cf. Schemes 5–7 and Tables 5–6). The configuration at C(2) of the amino acid derivatives (1R,1′R)‐ 11a , (1R,1′R)‐ 11b , (1S,1′R)‐ 12b , and (1R,1′R)‐ 12b was determined by X‐ray crystallography relative to the known configuration of the chiral auxiliary group.  相似文献   

6.
Treatment of (aR)‐[1,1′binaphthalene]‐8,8′‐diol ((−)‐ 1 ) with hexamethylphosphorous triamide afforded the N,N‐dimethylphosphoramidite (−)‐ 3 (Scheme 1). The synthesis of the analogous N,N‐diisopropylphosphoramidite 4 failed, however, and afforded the acyclic phosphonamidate (−)‐ 5 . The application of the cyclic phosphoramidite (−)‐ 3 towards asymmetric catalysis was investigated. The borane reduction of acetophenone ( 6 ) to (R)‐1‐phenylethanol ( 7 ) in the presence of (−)‐ 3 proceeded with 96% ee (Scheme 2). The use of (−)‐ 3 as ligand in several Cu‐catalyzed addition and substitution reactions resulted in enantioselectivities ranging from 0 to 50% (Schemes 3 and 4).  相似文献   

7.
An efficient route to 2′,3′‐dihydro‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives is described. It involves the reaction of isatine, 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one, and different amines in the presence of CS2 in dry MeOH at reflux (Scheme 1). The alkyl carbamodithioate, which results from the addition of the amine to CS2, is added to the α,β‐unsaturated ketone, resulting from the reaction between 1‐phenyl‐2‐(1,1,1‐triphenyl‐λ5‐phosphanylidene)ethan‐1‐one and isatine, to produce the 3′‐alkyl‐2′,3′‐dihydro‐4′‐phenyl‐2′‐thioxospiro[indole‐3,6′‐[1,3]thiazin]‐2(1H)‐one derivatives in excellent yields (Scheme 2). Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses.  相似文献   

8.
Addition of various amines to the 3,3‐bis(trifluoromethyl)acrylamides 10a and 10b gave the tripeptides 11a – 11f , mostly as mixtures of epimers (Scheme 3). The crystalline tripeptide 11f 2 was found to be the N‐terminal (2‐hydroxyethoxy)‐substituted (R,S,S)‐ester HOCH2CH2O‐D ‐Val(F6)‐MeLeu‐Ala‐OtBu by X‐ray crystallography. The C‐terminal‐protected tripeptide 11f 2 was condensed with the N‐terminus octapeptide 2b to the depsipeptide 12a which was thermally rearranged to the undecapeptide 13a (Scheme 4). The condensation of the epimeric tripeptide 11f 1 with the octapeptide 2b gave the undecapeptide 13b directly. The undecapeptides 13a and 13b were fully deprotected and cyclized to the [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐D ‐valine]]‐ and [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐L ‐valine]]cyclosporins 14a and 14b , respectively (Scheme 5). Rate differences observed for the thermal rearrangements of 12a to 13a and of 12b to 13b are discussed.  相似文献   

9.
This paper describes the development of novel aromatic platforms for supramolecular construction. By the Suzuki cross‐coupling protocol, a variety of functionalized m‐terphenyl derivatives were prepared (Schemes 1–4). Macrolactamization of bis(ammonium salt) (S,S)‐ 6 with bis(acyl halide) 7 afforded the macrocyclic receptor (S,S)‐ 2 (Scheme 1), which was shown by 1H‐NMR titration studies to form ‘nesting' complexes of moderate stability (Ka between 130 and 290 M ?1, 300 K) with octyl glucosides 13 – 15 (Fig. 2) in the noncompetitive solvent CDCl3. Suzuki cross‐coupling starting from 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl provided access to a novel series of extended aromatic platforms (Scheme 5) for cleft‐type (Fig. 1) and macrotricyclic receptors such as (S,S,S,S)‐ 1 . Although mass‐spectral evidence for the formation of (S,S,S,S)‐ 1 by macrolactamization between the two functionalized 3,3′,5,5′‐tetraaryl‐1,1′‐biphenyl derivatives (S,S)‐ 33 and 36 was obtained, the 1H‐ and 13C‐NMR spectra of purified material remained rather inconclusive with respect to both purity and constitution. The versatile access to the novel, differentially functionalized 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl platforms should ensure their wide use in future supramolecular construction.  相似文献   

10.
An efficient approach for one‐pot synthesis of biologically active new spiro[chroman‐3,2′‐chromeno[2,3‐b ]furan]‐2,4,4′‐(3′H )‐trione derivatives from tandem Knoevenagel–Michel addition–heterocyclization reaction between 4‐hydroxycumarin and various aldehydes in the presence of N,N,N ,N ′‐tetrabromobenzene‐1,3‐disulfonamide as an efficient catalyst at ambient temperature under solvent‐free conditions was reported. Simple procedure, high yields, easy work‐up, and reusability of the catalyst are the significant advantages of this process.  相似文献   

11.
Oligonucleotides containing the 5‐substituted 2′‐deoxyuridines 1b or 1d bearing side chains with terminal C?C bonds are described, and their duplex stability is compared with oligonucleotides containing the 5‐alkynyl compounds 1a or 1c with only one nonterminal C?C bond in the side chain. For this, 5‐iodo‐2′‐deoxyuridine ( 3 ) and diynes or alkynes were employed as starting materials in the Sonogashira cross‐coupling reaction (Scheme 1). Phosphoramidites 2b – d were prepared (Scheme 3) and used as building blocks in solid‐phase synthesis. Tm Measurements demonstrated that DNA duplexes containing the octa‐1,7‐diynyl side chain or a diprop‐2‐ynyl ether residue, i.e., containing 1b or 1d , are more stable than those containing only one triple bond, i.e., 1a or 1c (Table 3). The diyne‐modified nucleosides were employed in further functionalization reactions by using the protocol of the CuI‐catalyzed Huisgen–Meldal–Sharpless [2+3] cycloaddition (‘click chemistry’) (Scheme 2). An aliphatic azide, i. e., 3′‐azido‐3′‐deoxythymidine (AZT; 4 ), as well as the aromatic azido compound 5 were linked to the terminal alkyne group resulting in 1H‐1,2,3‐triazole‐modified derivatives 6 and 7 , respectively (Scheme 2), of which 6 forms a stable duplex DNA (Table 3). The Husigen–Meldal–Sharpless cycloaddition was also performed with oligonucleotides (Schemes 4 and 5).  相似文献   

12.
The synthesis of novel 2,2‐disubstituted 2H‐azirin‐3‐amines with a chiral amino group is described. Chromatographic separation of the diastereoisomer mixture yielded the pure diastereoisomers (1′R,2R)‐ 4a – e and (1′R,2S)‐ 4a – e (Scheme 1, Table 1), which are synthons for the (R)‐ and (S)‐isomers of isovaline, 2‐methylvaline, 2‐cyclopentylalanine, 2‐methylleucine, and 2‐(methyl)phenylalanine, respectively. The configuration at C(2) of the synthons was determined by X‐ray crystallography relative to the known configuration of the chiral auxiliary group. The reaction of 4 with thiobenzoic acid, benzoic acid, and the dipeptide Z‐Leu‐Aib‐OH ( 12 ) yielded the monothiodiamides 10 , the diamides 11 (Scheme 2, Table 3), and the tripeptides 13 (Scheme 3, Table 4), respectively.  相似文献   

13.
An efficient approach for the preparation of functionalized 2‐aryl‐2,5‐dihydro‐5‐oxo‐4‐[2‐(phenylmethylidene)hydrazino]‐1H‐pyrroles is described. The four‐component reaction between aldehydes, NH2NH2?H2O, dialkyl acetylenedicarboxylates, and 1‐aryl‐N,N′‐bis(arylmethylidene)methanediamines proceeds in EtOH under reflux in good‐to‐excellent yields (Scheme 1). The structures of 4 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS, and, in the case of 4f , by X‐ray crystallography). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

14.
7‐Alkynylated 7‐deazaadenine (pyrrolo[2,3‐d]pyrimidin‐4‐amine) 2′‐deoxyribonucleosides show strong fluorescence which is induced by the 7‐alkynyl side chain (Table 3). A large Stokes shift with an emission around 400 nm is observed when the compound is irradiated at 280 nm. The solvent dependence indicates the formation of a charged transition state. The fluorescence appears when the triple bond is in conjugation with the heterocyclic base. Electron‐donating substituents at the triple bond increase the fluorescence, while electron‐withdrawing residues reduce it. In comparison, the 7‐alkynylated 8‐aza‐7‐deazaadenine (pyrazolo[3,4‐d]pyrimidin‐4‐amine) 2′‐deoxyribonucleosides are rather weakly fluorescent (Table 4). Quantum yields and fluorescence decay times are measured. The synthesis of the 7‐alkynylated 7‐deaza‐2′‐deoxyadenosines and 8‐aza‐7‐deaza‐2′‐deoxyadenosines was performed with 7‐deaza‐2′‐deoxy‐7‐iodoadenosine ( 6 ) or 8‐aza‐7‐deaza‐2′‐deoxy‐7‐iodoadenosine ( 22 ) as starting materials and employing the Pd0‐catalyzed cross‐coupling reaction with the corresponding alkynes (Schemes 1, 4, and 5). Catalytic hydrogenation of the side chain of the unsaturated nucleosides 5 and 17 afforded the 7‐alkyl derivatives 18 and 19 , respectively, which do not show significant fluorescence (Scheme 2).  相似文献   

15.
A facile one‐pot, three‐component protocol for the synthesis of novel spiro[3H‐indole‐3,2′‐thiazolidine]‐2,4′(1H)‐diones by condensing 1H‐indole‐2,3‐diones, 4H‐1,2,4‐triazol‐4‐amine and 2‐sulfanylpropanoic acid in [bmim]PF6 (1‐butyl‐3‐methyl‐1H‐imidazolium hexafluorophosphate) as a recyclable ionic‐liquid solvent gave good to excellent yields in the absence of any catalyst (Scheme 1 and Table 2). The advantages of this protocol over conventional methods are the mild reaction conditions, the high product yields, a shorter reaction time, as well as the eco‐friendly conditions.  相似文献   

16.
The I2‐catalyzed preparation of spiro[1,3,4‐benzotriazepine‐2,3′‐indole]‐2′,5(1H,1′H)‐diones from 2‐aminobenzohydrazide and isatins in MeCN at room temperature in good‐to‐excellent yields is described. The structure of 3 was corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS data). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

17.
We describe the stereoselective synthesis of (2′S)‐2′‐deoxy‐2′‐C‐methyladenosine ( 12 ) and (2′S)‐2′‐deoxy‐2′‐C‐methylinosine ( 14 ) as well as their corresponding cyanoethyl phosphoramidites 16 and 19 from 6‐O‐(2,6‐dichlorophenyl)inosine as starting material. The methyl group at the 2′‐position was introduced via a Wittig reaction (→ 3 , Scheme 1) followed by a stereoselective oxidation with OsO4 (→ 4 , Scheme 2). The primary‐alcohol moiety of 4 was tosylated (→ 5 ) and regioselectively reduced with NaBH4 (→ 6 ). Subsequent reduction of the 2′‐alcohol moiety with Bu3SnH yielded stereoselectively the corresponding (2′S)‐2′‐deoxy‐2′‐C‐methylnucleoside (→ 8a ).  相似文献   

18.
The intermolecular cyclopropanation of styrene with ethyl diazo(triethylsilyl)acetate ( 1a ) proceeds at room temperature in the presence of chiral RhII carboxylate catalysts derived from imide‐protected amino acids and affords mixtures of trans‐ and cis‐cyclopropane derivatives 2a in up to 72% yield but with modest enantioselectivities (<54%) (Scheme 1 and Table 1). Protiodesilylation of a diastereoisomer mixture 2a with Bu4NF is accompanied by epimerization at C(1) (→ 3 ). The intramolecular cyclopropanation of allyl diazo(triethylsilyl)acetate ( 8a ), in turn, affords optically active 3‐oxabicyclo[3.1.0]hexan‐2‐one ( 9a ) with yields of up to 85% and 56% ee (Scheme 3 and Table 2). Similarly, the (2Z)‐pent‐2‐enyl derivative 8d reacts to 9d in up to 77% yield and 38% ee (Scheme 3 and Table 3). In contrast, the diazo decomposition of (2E)‐3‐phenylprop‐2‐enyl and 2‐methylprop‐2‐en‐1‐yl diazo(triethyl‐silyl)acetates ( 8b and 8c , resp.) is unsatisfactory and gives very poor yields of substituted 3‐oxabicyclo[3.1.0]hexan‐2‐ones 9b and 9c , respectively (Table 3).  相似文献   

19.
The [1,1′‐biisoquinoline]‐4,4′‐diol ( 4a ), which was obtained as hydrochloride 4a ?2 HCl in two steps starting from the methoxymethyl (MOM)‐protected 1‐chloroisoquinoline 8 (Scheme 3), opens access to further O‐functionalized biisoquinoline derivatives. Compound 4a ?2 HCl was esterified with 4‐(hexadecyloxy)benzoyl chloride ( 5b ) to give the corresponding diester 3b (Scheme 4), which could not be obtained by Ni‐mediated homocoupling of 6b (Scheme 2). The ether derivative 2b was accessible in good yield by reaction of 4a ?2 HCl with the respective alkyl bromide 9 under the conditions of Williamson etherification (Scheme 4). Slightly modified conditions were applied to the esterification of 4a ?2 HCl with galloyl chlorides 10a – h as well as etherification of 4a ?2 HCl with 6‐bromohexyl tris(alkyloxy)benzoates 11b , d – h and [(6‐bromohexyl)oxy]‐substituted pentakis(alkyloxy)triphenylenes 14a – c (Scheme 5). Despite the bulky substituents, the respective target 1,1′‐biisoquinolines 12, 13 , and 15 were isolated in 14–86% yield (Table).  相似文献   

20.
The preparation and the pairing properties of the new 3′‐deoxyribopyranose (4′→2′)‐oligonucleotide (=p‐DNA) pairing system, based on 3′‐deoxy‐β‐D ‐ribopyranose nucleosides is presented. D ‐Xylose was efficiently converted to the prefunctionalized 3‐deoxyribopyranose derivative 4‐O‐[(tert‐butyl)dimethylsilyl]‐3‐deoxy‐D ‐ribopyranose 1,2‐diacetate 8 (obtained as a 4 : 1 mixture of α‐ and β‐D ‐anomers; Scheme 1). From this sugar building block, the corresponding, appropriately protected thymine, guanine, 5‐methylcytosine, and purine‐2,6‐diamine nucleoside phosphoramidites 29 – 32 were prepared in a minimal number of steps (Schemes 2–4). These building blocks were assembled on a DNA synthesizer, and the corresponding p‐DNA oligonucleotides were obtained in good yields after a one‐step deprotection under standard conditions, followed by HPLC purification (Scheme 5 and Table 1). Qualitatively, p‐DNA shows the same pairing behavior as p‐RNA, forming antiparallel, exclusively Watson‐Crick‐paired duplexes that are much stronger than corresponding DNA duplexes. Duplex stabilities within the three related (i.e., based on ribopyranose nucleosides) oligonucleotide systems p‐RNA, p‐DNA, and 3′‐O‐Me‐p‐RNA were compared with each other (Table 2). Intrinsically, p‐RNA forms the strongest duplexes, followed by p‐DNA, and 3′‐O‐Me‐p‐RNA. However, by introducing the nucleobases purine‐2,6‐diamine (D) and 5‐methylcytosine (M) instead of adenine and cytosine, a substantial increase in stability of corresponding p‐DNA duplexes was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号