首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 161 毫秒
1.
Robust adaptive control of a class of nonlinear uncertain systems   总被引:1,自引:0,他引:1  
A smooth robust dynamic feedback controller is constructed, and the problem of robust H∞ almost disturbance attenuation with internal stability is solved for high-order nonlinear systems with parameter uncertainties. Finally, illustrative example and simulation results demonstrate the effectiveness of the proposed method.  相似文献   

2.
In this paper, the robust adaptive fuzzy tracking control problem is discussed for a class of perturbed strict-feedback nonlinear systems. The fuzzy logic systems in Mamdani type are used to approximate unknown nonlinear functions. A design scheme of the robust adaptive fuzzy controller is proposed by use of the backstepping technique. The proposed controller guarantees semi-global uniform ultimate boundedness of all the signals in the derived closed-loop system and achieves the good tracking performance. The possible controller singularity problem which may occur in some existing adaptive control schemes with feedback linearization techniques can be avoided. In addition, the number of the on-line adaptive parameters is not more than the order of the designed system. Finally, two simulation examples are used to demonstrate the effectiveness of the proposed control scheme.  相似文献   

3.
In this paper, a robust adaptive fuzzy control scheme for a class of nonlinear system with uncertainty is proposed. First, using prior knowledge about the plant we obtain a fuzzy model, which is called the generalized fuzzy hyperbolic model (GFHM). Secondly, for the case that the states of the system are not available an observer is designed and a robust adaptive fuzzy output feedback control scheme is developed. The overall control system guarantees that the tracking error converges to a small neighborhood of origin and that all signals involved are uniformly bounded. The main advantages of the proposed control scheme are that the human knowledge about the plant under control can be used to design the controller and only one parameter in the adaptive mechanism needs to be on-line adjusted.  相似文献   

4.
1IntroductionMany dynamic systems to be controlled have constant orslowly_varying uncertain parameters .Adaptive control is apopular approachtothe control ofsuchsystems [1] .Inthepast two decades ,significant progress has been made in theresearch and design of adaptive control systems [2,3] .Fairly complete and comprehensive guidelines are nowavailable for both design and implementation of adaptivecontrollers inthe cases where the systemunder control canbe adequately modeled as a linear dynami…  相似文献   

5.
A dissipative-based adaptive neural control scheme was developed for a class of nonlinear uncertain systems with unknown nonlinearities that might not be linearly parameterized. The major advantage of the present work was to relax the requirement of matching condition, i.e., the unknown nonlinearities appear on the same equation as the control input in a state-space representation, which was required in most of the available neural network controllers. By synthesizing a state-feedback neural controller to make the closed-loop system dissipative with respect to a quadratic supply rate, the developed control scheme guarantees that the L2-gain of controlled system was less than or equal to a prescribed level. And then, it is shown that the output tracking error is uniformly ultimate bounded. The design scheme is illustrated using a numerical simulation.  相似文献   

6.
Robust fault diagnosis for a class of nonlinear systems   总被引:1,自引:0,他引:1  
Robust fault diagnosis based on adaptive observer is studied for a class of nonlinear systems up to output injection. Adaptive fault updating laws are designed to guarantee the stability of the diagnosis system. The upper bounds of the state estimation error and fault estimation error of the adaptive observer are given respectively and the effects of parameter in the adaptive updating laws on fault estimation accuracy are also discussed. Simulation example demonstrates the effectiveness of the proposed methods and the analysis results.  相似文献   

7.
The robust decentralized adaptive output-feedback stabilization for a class of interconnected systems with static and dynamic interconnections by using the MT-filters and backstepping design method is studied. By introducing a new filtered tramfomnation, the adaptive laws were derived for measurement. Under the assurnption of the nonlinear growth conditions imposed on the nonlinear interconnections and by constructing the error system and using a new proof method, the global stability of the closed-loop system was effectively analyzed, and the exponential convergence of all the signals except for parameter estimates were guaranteed.  相似文献   

8.
1IntroductionNonlinear singularly perturbed systems arise in a widevariety of engineering applications,representative examplesinclude catalytic continuous stirred_tank reactors[1],biochemical reactors[2],fluidized catalytic crackers[3],flexible mechanical systems[4],electromechanical networks[5],etc.For such systems,the output regulation problem,i.e.the problem of having the output tracking reference(or rejecting disturbance)signals produced by someexternal generator,is ofimportance.In linear …  相似文献   

9.
This paper focuses on the robust H-infinity reliable control for a class of nonlinear neutral delay systems with uncertainties and actuator failures. We design a state feedback controller in terms of linear matrix inequality(LMI) such that the plant satisfies robust H-infinity performance for all adnfissible uncertainties, and actuator failures among a prespecified subset of actuators. An example is also given to illustrate the effectiveness of the proposed approach.  相似文献   

10.
Focus is hid on the adaptive practical output-tracking problem of a chss of nonlinear systems with high-order lower-triangular structure and uncontrollable unstable linearization. Using the modified adaptive addition of a power integrator technique as a basic tool, a new smooth adaptive state feedback controller is designed. This controller can ensure all signals of the closed-loop systems are globally bounded and output tracking error is arbitrary small.  相似文献   

11.
In this paper, the problem of adaptive fuzzy tracking control is investigated for switched nonlinear pure-feedback systems under arbitrary switching. By utilising mean value theorem, the considered pure-feedback systems are transformed into a class of switched nonlinear strict-feedback systems. Compared with the existing results, a priori knowledge of control directions is not required. On the other hand, differing from the existing literatures, the piecewise switched adaptive laws are designed to replace the common adaptive laws, which can reduce the conservativeness. Furthermore, the difficulties from how to deal with the unknown control directions and design common virtual control are overcome. Based on the backstepping technique and the common Lyapunov functions, an adaptive fuzzy control scheme is developed to guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded with the tracking error converging to a neighbourhood of the origin. Simulation results are provided to demonstrate the effectiveness of the proposed techniques.  相似文献   

12.
This article presents a direct adaptive fuzzy control scheme for a class of uncertain continuous-time multi-input multi-output nonlinear (MIMO) dynamic systems. Within this scheme, fuzzy systems are employed to approximate an unknown ideal controller that can achieve control objectives. The adjustable parameters of the used fuzzy systems are updated using a gradient descent algorithm that is designed to minimize the error between the unknown ideal controller and the fuzzy controller. The stability analysis of the closed-loop system is performed using a Lyapunov approach. In particular, it is shown that the tracking errors are bounded and converge to a neighborhood of the origin. Simulations performed on a two-link robot manipulator illustrate the approach and exhibit its performance.  相似文献   

13.
In this paper, a novel robust adaptive fuzzy variable structure control (RAFVSC) scheme is proposed for a class of uncertain nonlinear systems. The uncertain nonlinear system and gain functions originating from modeling errors and external disturbances are all unstructured (or non-repeatable), state-dependent and completely unknown. The Takagi–Sugeno type fuzzy logic systems are used to approximate uncertain functions in the systems and the RAFVSC is designed by use of the input-to-state stability (ISS) approach and small gain theorem. In the algorithm, there are three advantages which are that the asymptotic stability of adaptive control in the presence of unstructured uncertainties can be guaranteed, the possible controller singularity problem in some of existing adaptive control schemes using feedback linearization techniques can be removed and the adaptive mechanism with minimal learning parameterizations can be achieved. The performance and effectiveness of the proposed methods are discussed and illustrated with two simulation examples.  相似文献   

14.
This paper focuses on an adaptive fuzzy tracking control problem for a class of pure-feedback stochastic nonlinear systems with unknown dead zone outputs. To overcome the design difficulty arising from the nonlinearity in the output mechanism, the new properties of Nussbaum function are employed and an auxiliary virtual controller is constructed. The proposed adaptive fuzzy control method guarantees that all the signals in the closed-loop system are bounded in probability and the tracking error converges to a small neighbourhood of the origin in the sense of mean quartic value. Simulation results further demonstrate the effectiveness of the presented control algorithm.  相似文献   

15.
In this paper, a robust adaptive neural control design approach is presented for a class of uncertain pure-feedback nonlinear systems. To reduce the complexity of the both controller structure and computation, only one neural network is used to approximate the lumped unknown function of the system at the last step of the recursive design process. By this approach, the complexity growing problem existing in conventional methods can be eliminated completely. Stability analysis shows that all the closed-loop system signals are uniformly ultimately bounded, and the steady state tracking error can be made arbitrarily small by appropriately choosing control parameters. Simulation results demonstrate the effectiveness and merits of the proposed approach.  相似文献   

16.
一类不确定非线性系统的鲁棒自适应轨迹线性化控制   总被引:1,自引:1,他引:0  
针对一类不确定非线性系统,研究了一种新的鲁棒自适应轨迹线性化控制方案.利用径向基神经网络的在线逼近能力以及被控对象分析模型的有用信息设计一种径向基神经网络干扰观测器来估计系统中存在的不确定性.观测器输出用于设计补偿控制律抵消不确定性对系统性能的影响,鲁棒自适应控制律用于克服逼近误差.采用Lyapunov方法严格证明了在自适应调节律作用下闭环系统所有误差信号最终有界.最后利用倒立摆系统验证了新方法的有效性.  相似文献   

17.
In the previous work of Huang et al., a decentralized direct adaptive fuzzy H tracking controller of large-scale nonaffine nonlinear systems is obtained predicated upon the assumption that the mismatching error dynamics stay squared integrable. In this note, we focus in the absence of the conservative assumption upon developing a robust decentralized direct adaptive output feedback fuzzy controller. By combination of a state observer, a fuzzy inference system and robust control technique, the previous controller design is modified and no a priori knowledge of bounds on lumped uncertainties is required. All the signals of the closed-loop large-scale system are proved to be uniformly ultimately bounded. The effectiveness of the developed scheme is demonstrated through the simulation results of interconnected inverted pendulums.  相似文献   

18.
A procedure is developed for the design of adaptive neural network controller for a class of SISO uncertain nonlinear systems in pure-feedback form. The design procedure is a combination of adaptive backstepping and neural network based design techniques. It is shown that, under appropriate assumptions, the solution of the closed-loop system is uniformly ultimately bounded.  相似文献   

19.
In this paper,a new fuzzy adaptive control approach is developed for a class of SISO uncertain pure-feedback nonlinear systems with immeasurable states.Fuzzy logic systems are utilized to approximate the unknown nonlinear functions;and the filtered signals are introduced to circumvent algebraic loop systems encountered in the implementation of the controller,and a fuzzy state adaptive observer is designed to estimate the immeasurable states.By combining the adaptive backstepping technique,an adaptive fuzzy output feedback control scheme is developed.It is proven that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are semi-globally uniformly ultimately bounded(SGUUB),and the observer and tracking errors converge to a small neighborhood of the origin by appropriate choice of the design parameters.Simulation studies are included to illustrate the efectiveness of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号