首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of MoS2 content on microstructure, density, hardness and wear resistance of pure copper were studied. Copper-based composites containing 0–10% (mass fraction) MoS2 particles were fabricated by mechanical milling and hot pressing from pure copper and MoS2 powders. Wear resistance was evaluated in dry sliding condition using a pin on disk configuration at a constant sliding speed of 0.2 m/s. Hardness measurements showed a critical MoS2 content of 2.5% at which a hardness peak was attained. Regardless of the applied normal load, the lowest coefficient of friction and wear loss were attained for Cu/2.5MoS2 composite. While coefficient of friction decreased when the applied normal load was raised from 1 to 4 N at any reinforcement content, the wear volume increased with increasing normal load. SEM micrographs from the worn surfaces and debris revealed that the wear mechanism was changed from mainly adhesion in pure copper to a combination of abrasion and delamination in Cu/MoS2 composites.  相似文献   

2.
In this study,Cu/WS2 self-lubricating composites are fabricated by spark plasma sintering.Interfacial microstructure and its effect on mechanical and tribological properties are investigated.High sintering temperature at 850 ℃ promotes decomposi-tion of WS2 and its following interfacial reaction with Cu to form Cu0.4W0.6 nanoparticles and Cu2S,enhancing mechanical properties as well as wear resistance of the composites.But the destruction of WS2 leads to a high friction coefficient.On the contrary,for the composites sintered at 750 ℃,a nanoscale diffusion zone forms at the Cu/WS2 interface.WS2 lubricant retains its lamellar structure.The composite shows excellent self-lubrication performance,with a low friction coefficient of 0.16.However,its mechanical properties are low,and the wear rate is one magnitude higher.  相似文献   

3.
采用粉末冶金方法在相同的工艺条件下制备纯铜和碳纳米管含量为10%(体积分数)的铜基复合材料。在一种销盘式载流摩擦磨损试验机上考察了不同电流条件下2种材料的载流摩擦磨损性能。结果表明:纯铜和铜基复合材料的摩擦系数和磨损率均随电流的增大而增大,但是电流对纯铜材料的影响更加显著;纯铜材料的主导磨损机制是电弧烧蚀磨损,而铜基复合材料的主导磨损机制是塑性流动变形;碳纳米管可以改善铜基复合材料的载流摩擦磨损性能。  相似文献   

4.
C/C-Cu复合材料的组织和摩擦磨损性能   总被引:5,自引:1,他引:5  
以炭纤维针刺整体毡为预制体,用化学气相渗透(CVI)、浸渍/炭化(I/C)的方法制备密度和基体炭不同的C/C多孔坯体,采用真空熔渗将熔融Cu渗入到C/C坯体中制备C/C-Cu复合材料,利用X射线衍射、金相显微镜和扫描电镜分析复合材料的组织结构,研究复合材料的摩擦磨损性能。结果表明:Cu成功地渗入C/C坯体中,并填充了坯体的孔洞和炭纤维之间的孔隙,复合材料的主要相为Cu、C及少量的TiC相,当渗剂中Ti的质量分数达到15%时,出现微量的Cu和Ti的金属化合物相;复合材料的摩擦因数随着摩擦时间的增加而逐渐增加并趋于稳定。渗剂相同时,摩擦因数和体积磨损量随着材料密度增加而增加;坯体相同时,随着渗剂中Ti含量增加,摩擦因数增加,体积磨损减小。随着外加载荷的增加,摩擦因数和体积磨损先增后减,80N载荷时均达到最大值;与J204电刷对比,同样条件下,两者摩擦因数接近,但C/C-Cu复合材料的体积磨损量远远小于J204电刷的。  相似文献   

5.
采用树脂碳化和碳气相沉积相结合的方法制备了碳/碳纤维(C/CF)先驱丝,用压力浸渗凝固成形方法制备了碳/碳纤维/铜(C/CF/Cu)复合材料,借助于扫描电镜下复合材料界面和相分布观察,以及显微硬度和滑动摩擦磨损测试,探讨了基体碳(树脂碳化碳和沉积碳)对C/CF/Cu复合材料成形、显微硬度及摩擦磨损的影响。结果表明,碳化和碳气相沉积处理的C/CF先驱丝相对致密,并阻碍铜液的压力浸渗成形,但该先驱丝硬度高于碳化处理的C/CF先驱丝。碳化和碳气相沉积处理的C/CF/Cu复合材料滑动摩擦磨损耐磨性高于纯铜,而且滑动摩擦因数也高于纯铜。证明C/CF/Cu复合材料是一种具有摩阻功能的复合材料。  相似文献   

6.
Present work encapsulated the friction and wear behaviour of aluminium matrix composites reinforced with different mass fractions of titanium diboride (TiB2) particles, synthesized by stir casting. A pin on disc tribotester was employed for conducting the dry sliding wear tests of Al2024-TiB2 composites. The tests were performed adopting various parameters like load, sliding distance and sliding velocity for investigating the effect of tribological parameters on the prepared composites. Microstructural characterization confirmed uniform dispersion of TiB2 particles and good matrix-reinforcement bonding. Results of the experiments revealed that, low friction and wear rates were observed in the developed composites compared to Al2024 alloy, whereas wear rates of both Al2024 alloy and fabricated composites increased with the increase in load, sliding velocity and sliding distance. However, friction coefficient of both Al2024 alloy and fabricated composites reduced with the increase in applied load but rose with the increase in sliding velocity and sliding distance. SEM studies of the worn surfaces and debris depicted that enhancement in wear resistance can be ascribed to finer debris formation.  相似文献   

7.
铝基体上碳纳米管原位均匀合成及其复合材料的性能   总被引:1,自引:0,他引:1  
采用负载于铝粉上的镍催化剂,成功地在650℃通过化学气相沉积法在钳基体中原位合成碳纳米管。结构农征表明,所合成的碳纳米管具有较高的石墨化程度和平直的石墨壳层。通过该方法实现铝粉中碳纳米管的弥散分布,其分散效果优于传统机械混合方法。利用所合成的碳纳米管/铝原位复合粉末,采用粉末冶金工艺制备碳纳米管/铝基复合材料。性能测试表明,制备的复合材料的力学性能和尺寸稳定性得到显著提高,其原因在于铝基体中碳纳米管的均匀分散和碳纳米管-铝基体之间良好的界面结合。  相似文献   

8.
The present work deals with the investigation on weight loss and coefficient of friction of TiC reinforced Al-4.5%Cu in situ metal matrix composites. Experiments were conducted using pin-on-disc apparatus against abrasive paper by varying the applied load, sliding distance, and weight percentage of TiC. The results indicated significant improvement in the mechanical properties and wear resistance of experimental composites as compared to the parent metal matrix. The percentage of porosity though increased with increasing TiC reinforcement. The variation of weight loss of composites increased linearly with increasing applied load and sliding distance, whereas decreased with increasing weight percentage of TiC reinforcement. The coefficient of friction decreased linearly with increasing applied load and TiC reinforcement. SEM micrographs of worn surfaces show a well compacted transfer layer of wear debris along with wear track over the sliding surface. Grooves, delamination, and crack propagation were also observed in all test samples. The effective depth of penetration and size of debris was seen to reduce with increasing wt.% of TiC reinforcement in metal matrix.  相似文献   

9.
以碳纳米管(CNTs)、碳化硅(SiC)粉体、锌(Zn)粉和CuSO_4·5H_2O为主要原料,用化学镀的方法制备CNTs /Cu复合粉体,再采用非均相沉淀法制备CNTs/SiC/Cu复合粉体.在750 ℃、100 MPa的制度下进行真空热压烧结后制得CNTs/SiC/Cu复合材料,其中Cu的含量(体积分数,下同)为70%,CNTs的含量(体积分数, 下同)分别为0,3%,5%,8%,12%.利用XRD、SEM分析样品的物相组成和显微结构;利用阿基米德排水法、显微硬度计、三点弯曲法测试了复合材料的密度、显微硬度和抗弯强度.结果表明,随着碳纳米管含量的增加,CNTs/SiC/Cu复合材料的密度、显微硬度和抗弯强度等性能发生相应变化,其中,抗弯强度呈现逐渐升高趋势.与未添加碳纳米管的30SiC/70Cu复合材料相比,添加12%CNTs的12CNTs/18SiC/70Cu 样品,抗弯强度提高了21.45 MPa.  相似文献   

10.
The uniformly dispersed carbon nanotubes(CNTs) reinforced 6061Al composites(CNT/6061Al) with diff erent CNT concentrations were fabricated by powder metallurgy technology. It was found that the friction coe ffi cient as well as wear rate decreased fi rst and then increased as the CNT concentration increasing under 15 N as well as 30 N, and the minimum wear rate was achieved at the CNT concentration of 2 wt%. Adhesive wear and abrasive wear were the dominated wear mechanisms for the 1–2 wt% CNT/6...  相似文献   

11.
目的为了降低C/C复合材料制造成本,扩展C/C复合材料应用领域,选用低成本预氧丝纤维取代碳纤维,制备出C/C复合材料,并研究纤维种类对C/C复合材料摩擦磨损性能的影响。方法以两种纤维为原材料,采用CVI工艺制备出C/C复合材料,用MM-2000摩擦试验机进行摩擦磨损试验,采用扫描电镜对摩擦面进行形貌分析。结果随着载荷的增大,预氧丝基C/C复合材料在与金属摩擦时摩擦因数保持在0.22左右,平均磨损量为0.82 mg/min,而碳纤维基C/C复合材料与金属配副相对摩擦因数较小(0.15~0.20),平均磨损量为1.17 mg/min。三种碳与碳配副中,预氧丝基C/C复合材料同预氧丝基C/C复合材料配副之间的摩擦因数随载荷波动的范围为0.28~0.33,较稳定,平均磨损量为1.76mg/min。碳纤维基复合材料与碳纤维复合材料配副时,随着载荷的增大,摩擦因数变化范围较大(0.15~0.33),平均磨损量为2.35 mg/min。预氧丝基复合材料与碳纤维基复合材料之间相互配副,其磨损最大,平均磨损量为2.95 mg/min。结论 C/C复合材料的摩擦磨损性能与纤维种类有很大关系,采用预氧丝纤维制备出的C/C复合材料,无论与金属相互摩擦,还是与自身材料摩擦,均易形成较为稳定的润滑膜。随着载荷的增加,摩擦因数变化较小,磨损量和摩擦功也最低,表现出比碳纤维基C/C复合材料更优异的摩擦性能。  相似文献   

12.
Electroless Cu plating was used for flake G powder and CNTs, Cu-G-CNTs (copper/graphite/carbon nanotubes) composites were manufactured by means of powder metallurgical method. The influences of CNTs on the mechanical properties, conductivity properties, friction, and wear performance of the composite were examined. The results indicate that adding a small amount of CNTs can improve comprehensive property of the composites, especially mechanical property. However, excessive CNT, which is easily winding reunion and grain boundary segregation, results in performances degradation.  相似文献   

13.
以h-BN、石墨、短切炭纤维和树脂等为原料,采用模压技术+浸渍/炭化技术制备4种C/C-BN复合材料,并在M2000型试验相同测试其与40Cr钢配副时的滑动摩擦性能。结果表明:h-BN质量分数分别为3.4%和20.7%的材料的抗压强度较高,其摩擦因数随载荷增加均先增加后降低;h-BN为6.8%的材料的摩擦因数降幅最大,达0.049;而h-BN为10.1%的材料的抗压强度最低,其摩擦因数呈现波浪状起伏。随载荷增加,h-BN为3.4%和20.7%的材料的体积磨损增幅较低;而h-BN为6.8%的材料的体积磨损增幅最大,达2.41 mm3。随着时间的延长,4种材料的摩擦因数均逐渐稳定。SEM观察表明:h-BN为3.4%的材料的摩擦表面在中低载荷下较完整致密、但有长度与石墨微晶尺寸接近(10~50μm)的网络状裂纹,摩擦表面在高载荷下则较粗糙;而h-BN为10.1%的材料的摩擦表面均较粗糙、不完整。  相似文献   

14.
通过采用粉末冶金和原位合成技术相结合的近净成形技术制备Al-5%Si-Al2O3复合材料,并运用M一2000摩擦磨损试验机对该复合材料的摩擦磨损性能进行研究。通过单一变量比较法分析载荷和滑动速度对Al-5%Si-Al2O3复合材料摩擦磨损性能的影响,同时对长时间连续磨损下该材料的摩擦性能进行研究。通过扫描电子显微镜对Al-5%Si-Al2O3复合材料的磨损表面进行观察,并分析其磨损机制。结果表明,随着载荷的增大,试样的磨损量和摩擦因数均增加;随着滑动速度的增大,试样表面的升温使得产生氧化层的速率增加,试样的磨损量和摩擦因数均减少。在长时间的连续磨损过程中,由于初始时发生粘着磨损,试样的摩擦因数随着滑动距离的增大而增大。然后,试样表面氧化层的形成和破坏趋于动态平衡,试样表面相对稳定,其摩擦因数也随之趋于平稳。铝基复合材料的磨损机制主要为磨粒磨损、粘着磨损和氧化磨损。  相似文献   

15.
The lubricated reciprocating wear behavior of two composites A319/15%SiCp and A390/15%SiCp produced by the liquid metallurgy route was investigated by means of an indigenously developed reciprocating friction wear test rig using a fractional factorial-design approach. The main purpose was to study the influence of wear and friction test parameters such as applied load, sliding distance, reciprocating velocity, counter surface temperature and silicon content in composites, as well as their interactions on the wear and friction characteristics of these composites. Two output responses (wear loss and coefficient of friction) were measured. The input parameter levels were fixed through pilot experiment conducted in the newly developed reciprocating friction and wear test rig. The counter surface material used for the wear study was cast iron having Vickers hardness of 244 HVN. It had been demonstrated through established equations that A390/15%SiCp composite is subjected to low wear compared to the A319/15%SiCp composite. The experimental results indicate that the proposed mathematical models suggested could adequately describe the performance indicators within the limits of the factors that are being investigated. The applied load, sliding distance, reciprocating velocity, counter surface temperature, and silicon content in composite are the five important factors controlling the friction and wear characteristics of the composite in lubricated condition. Moreover, the two factor interactions have a strong effect on the wear of composites. The results give a comprehensive insight into the wear of the composites.  相似文献   

16.
The microstructural characterization and uniaxial tensile tests of Al/Cu laminated composites were taken to investigate the interface effect and fracture process of the composites.The electron microscopic graphs before and after tensile test were used to evaluate the fracture behavior.Experimental results show that the fracture surfaces of laminated composites mainly present brittle failure characteristics,accompanied with several dimples on the matrixes and a few tearing on the interface.Cracks generally initiate from the interfacial interlayer and variously propagate depending on the interfacial bonding.It is found that Cu/Al interface with enhanced bonding strength generally hinders the propagation of interlayer cracks,while the interface with weak bonding delaminates by the cracks propagation through the interfacial defects.The additional shear stress on the interface between Cu and Al layers due to their different tensile ductilities aggravates the interfacial propagation of cracks.The local plastic deformation of individual matrix layer then occurs after cracks coalesce and failure in the interface.Therefore,the strong bonding interface and matching properties between individual matrix layers are required to improve the fracture performance of Al/Cu laminated composites.  相似文献   

17.
Nickel-carbon nanotube(CNT) composite coatings with a Zn-Ni interlayer were prepared by electrodeposition technique on aluminum substrate. The effects of CNT concentration in plating bath on the volume fraction of CNTs in the deposits and the coating growth rate were investigated. The friction and wear behavior of the Ni-CNT composite coatings were examined using a pitt-on-disk wear tester under dry sliding eonditions at a sliding speed of 0.062 3 m/s and load range from 12 N to 150 N. Because of the reinforcement of CNTs in the composite coatings, at lower applied loads, the wear resistance was improved with increasing volume fraction of CNTs. Since cracking and peeling occur on the worn surface, the wear rates of composite coatings with high volume fraction of CNTs increase rapidly at higher applied loads. The friction coefficient of the composite coatings decreases with the increasing volume fraction of CNTs due to the reinforcement and self-lubrication of CNTs.  相似文献   

18.
B4C-coated diamond (diamond@B4C) particles are used to improve the interfacial bonding and thermal properties of diamond/Cu composites. Scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy were applied to characterize the formed B4C coating on diamond particles. It is found that the B4C coating strongly improves the interfacial bonding between the Cu matrix and diamond particles. The resulting diamond@B4C/Cu composites show high thermal conductivity of 665 W/mK and low coefficient of thermal expansion of 7.5 × 10?6/K at 60% diamond volume fraction, which are significantly superior to those of the composites with uncoated diamond particles. The experimental thermal conductivity is also theoretically analyzed to account for the thermal resistance at the diamond@B4C-Cu interface boundary.  相似文献   

19.
以硼质量分数为0.5%的Cu–B合金为金属基体以及平均粒径为500 μm的金刚石颗粒为增强体,采用气压熔渗法制备金刚石/Cu–B合金复合材料,研究气压参数对其组织结构和热物理性能的影响规律。结果表明:随着气压升高,金刚石与Cu–B合金之间的界面结合效果、导热性能均增强,热膨胀系数减小;当气压为10 MPa时,其界面结合效果最优,界面处生成的碳化物层将金刚石完全覆盖,且100 ℃时的样品热导率为680.3 W/(m·K),热膨胀系数为5.038×10?6 K?1,满足电子封装材料的热膨胀系数要求。   相似文献   

20.
The graphite (Gr)/MoS2 reinforced Mg self-lubricating composites were prepared through powder metallurgy. The composites were characterized for microstructure, physical, mechanical and wear properties. Gr/MoS2 phase in the composites was identified by XRD analysis. Microstructural observation showed that the Gr/MoS2 particles were homogeneously dispersed within the magnesium matrix. Micro-hardness was measured using an applied load of 5 g with a dwell time of 15 s at room temperature. Hardness of all the composites was measured to be in the range of VHN 29–34. The mechanical properties were studied using micro-hardness, tensile and compression tests. A fractographic analysis was performed using scanning electron microscope. The highest values of hardness, compressive strength and tensile strength were attained using Mg–10MoS2 composite. A pin-on-disk tribometer was used to measure the friction coefficient and the wear loss of the sintered composites. In addition to that, the friction and wear mechanism of the composites were systematically studied by worn surface characterization and wear debris studies using SEM analysis. The reduced friction coefficient and wear loss were achieved in MoS2 rather than Gr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号