首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
研究了芳炔基酚醛树脂(AEP)作为复合材料基体的适用性。溶解性和流变性能测试表明,AEP树脂工艺性良好,适合于模压等多种成型工艺。采用差示扫描量热分析仪(DSC)和红外光谱仪(IR)研究了树脂的固化行为,确定了固化制度。热重分析仪(TGA)的结果表明,与传统酚醛树脂相比,AEP树脂耐热性和炭炭性能明显提高,5%失重温度为421℃,氮气氛围900℃的残重值约为79%。石英布/AEP树脂复合材料的力学性能测试结果表明,其室温和高温力学性能明显优于聚芳基乙炔树脂(PAA)复合材料。  相似文献   

2.
研究了炔丙基改性酚醛树脂(PN)作为复合材料基体的工艺性和耐热性,及PN石英布层合板的力学性能和耐热性。结果表明,PN树脂适用于RTM、模压等多种成型过程;PN树脂浇铸体玻璃化温度在330℃~380℃;PN石英布层合板的力学性能比普通酚醛树脂层合板有明显提高,其中材料力学性能随炔丙基含量增大而趋于降低;PN石英布层合板的耐热性(玻璃化温度超过360℃)远高于普通酚醛树脂层合板(玻璃化温度低于280℃)。  相似文献   

3.
新型酚醛树脂MPN作为复合材料基体的评价   总被引:2,自引:2,他引:0       下载免费PDF全文
研究了羟甲基炔丙基改性酚醛树脂( Methylol pr opargyl novolac r esin: MPN) 作为复合材料基体的工艺性和耐热性, 评价了其作为树脂基体的石英布层合板复合材料的力学性能和耐热性。结果表明: 加成缩合二元固化型MPN 树脂具有适用于RTM ( Resin transfer moulding) 、模压等多种成型方法的良好工艺性; 树脂浇铸体表现出优异的耐热性, 其玻璃化温度达到350e 以上; MPN 树脂石英布层合板的力学性能相对普通酚醛树脂层合板有所提高, 其中MPN 树脂中羟甲基含量增大会导致材料力学性能降低; MPN 石英布层合板的耐热性则远优于酚醛树脂层合板, 前者的玻璃化温度( 以DMA 表征, 360~ 380 e ) 远高于后者( < 280e ) 。   相似文献   

4.
制备了氰酸酯树脂质量分数为75%的氰酸酯-环氧树脂(CE75)及高模碳纤维增强CE75(CF/CE75)的复合材料,研究了该树脂的工艺性,确定了其固化制度,考察了树脂的耐热性和力学性能,并在模拟空间环境条件下,考察了高模CF/CE75复合材料管件的力学性能和真空逸气性能。试验结果表明,CE75树脂具有良好的工艺性,适合湿法缠绕成型工艺。CE75树脂固化物表现出良好的耐热性,其玻璃化转变温度为195.6℃,起始热分解温度为368.6℃。高模CF/CE75复合材料抗空间环境性能优异,在真空环境下,复合材料真空逸气性能满足航天标准要求,经冷热循环(-196~130℃)200次后,管件力学性能保持率大于96%。高模CF/CE75复合材料是抗空间环境材料的理想候选材料。  相似文献   

5.
耐高温有机透波复合材料是国家战略必需的关键材料,是一类集防热、透波、承载于一体的多功能介质材料.树脂基体是决定复合材料性能的重要因素.综述了耐高温有机透波复合材料用高性能树脂基体的最新研究进展.  相似文献   

6.
以碱为催化剂,通过新酚树脂与4-硝基邻苯二甲腈之间的亲核取代反应,制备了邻苯二甲腈醚化新酚树脂(BPX)。流变性能测试结果表明,BPX树脂在165~285℃间黏度值小于400mPa.s,表明该树脂具有优良的加工性能。DSC测试结果表明,BPX树脂的固化温度范围为320~420℃,固化反应峰值温度为386.24℃,固化放热约为182.26 J/g。该树脂的固化物表现出优良的耐热性,其储能模量起始下降温度高于450℃,5%失重温度(T5d)约为519℃,氮气氛围900℃残碳率约为75%。  相似文献   

7.
分别以3,4′-二氨基二苯基醚(3,4′-ODA)和3,3′,4,4′-二苯甲酮四羧酸二酐(BTDA)作为二胺和二酐单体、5-降冰片烯-2,3-二甲酸酐(NA)作为封端剂,通过调节3种原料的化学计量比,在无水甲醇溶剂中合成了具有不同分子量的预聚体,并通过不同温度下的热处理获得了一系列聚酰亚胺(PI)树脂。结果表明:随着预聚体分子量的增加,固化后PI树脂的热稳定性得到提高,5%热失重温度(T5%)由460℃升至513℃,10%热失重温度(T10%)由513℃升至554℃;但是由于交联密度的降低,PI树脂的玻璃化转变温度(Tg)随预聚体分子量的增加从309℃降低至271℃。同时发现,合理的后固化可使PI树脂的耐高温性能得到提高。以该系列PI树脂为基体,采用手糊法制备了一系列碳纤维增强聚酰亚胺(CF/PI)复合材料,它们表现出优良的耐热性能(T5%:532~595℃,T10%:631~840℃,Tg:346~422℃)和机械性能(弯曲强度:559~811MPa,...  相似文献   

8.
聚芳醚酮改性酚醛树脂复合材料的制备及性能研究   总被引:3,自引:0,他引:3  
采用热塑性聚芳醚酮(PAEK)与环氧树脂制得预聚体,并用预聚体改性酚醛树脂,起到增韧作用.通过红外光谱、综合热分析和力学性能测试对复合材料进行性能表征.研究结果表明,材料的韧性和热性能对PAEK的含量有一定的依赖性.红外光谱分析表明,PAEK固化过程中没有参与反应;热分析表明,改性的酚醛树脂复合材料的耐热性良好,最高热分解温度为525℃.  相似文献   

9.
一种RTM 用苯并噁嗪树脂的工艺性及其复合材料性能   总被引:4,自引:0,他引:4  
制备了一种可用于树脂传递模塑( RTM) 工艺的高性能苯并噁嗪共混树脂体系( BA21) 。研究了BA21 的注射工艺性, 确定了其固化程序, 并考察了采用RTM 工艺制备的BA21 基复合材料的基本力学性能。升温及恒温黏度测试结果表明, BA21 树脂体系能够用于RTM 工艺。依据修正的双阿累尼乌斯方程建立了与实验数据较为吻合的化学流变模型, 利用该模型可以选择合适的注射温度。通过不同温度下的恒温DSC 测试及修正的Kamal 动力学模型计算得到BA21 树脂体系的固化反应级数, 并确定后固化温度为200 ℃。采用RTM 工艺制得的玻璃纤维/ BA21 复合材料表现出优异的力学性能, 弯曲强度达600 MPa , 弯曲模量达30 GPa , 冲击强度达210 kJ/ m2 。   相似文献   

10.
采用改性的单体反应物聚合法(MPMR)合成了一系列低黏度、耐高温异构聚酰亚胺树脂, 研究了树脂预聚物分子质量对树脂的高温流变行为、固化后热氧化稳定性的影响, 并对树脂的分子结构及其复合材料的加工工艺性能、力学性能进行了表征。结果表明: 树脂预浸液常温储存期大于两个月, 亚胺化后PI-2纯树脂最低黏度为154 Pa·s, 固化后树脂质量损失5%的温度大于560 ℃; 石英纤维/PI-2树脂基复合材料在室温和500 ℃的弯曲强度分别为917、197 MPa, 弯曲模量分别为29、22 GPa, 拉伸强度分别为760、341 MPa, 拉伸模量分别为32、31 GPa, 压缩强度分别为570、95 MPa, 层间剪切强度分别为62、10 MPa。   相似文献   

11.
以酶解木质素(EHL)为原料,采用苯酚-硫酸法对其进行酚化改性,所得酚化木质素(PL)在碱性条件下,与环氧氯丙烷(ECH)合成木质素-环氧树脂(L-EP),利用FT-IR对产物进行表征。探讨单因素反应条件对酚化工艺的影响。结果表明:反应时间3.0h、反应温度95℃、2mol/L H_2SO_4用量为4mL/g时,木质素的酚化效果最佳,其酚羟基含量达到4.632mmol/g,较EHL提高42%。研究了不同L-EP添加量对L-EP/环氧E-51复合材料力学性能和热性能的影响。结果显示:L-EP的添加量为5%时,L-EP/环氧E-51复合材料的拉伸强度最好,较纯E-51提高26%;随着L-EP添加量的增加,L-EP/环氧E-51复合材料的热稳定性增强。采用非等温法分析环氧E-51和L-EP/环氧E-51复合材料的固化动力学,结果证明:L-EP对复合材料固化有一定的促进作用。  相似文献   

12.
以4,5-环氧己烷-1,2-二甲酸二缩水甘油酯(TDE-85)、苯基缩水甘油醚(PGE)、壬基酚(NP)作为改性剂改性双酚A氰酸酯(BCE)得到改性氰酸酯树脂(TPNCE),通过湿法缠绕制备预浸料,并采用热压罐成型工艺制备S30M型高强高模聚酰亚胺纤维/TPNCE(PI/TPNCE)复合材料,对TPNCE树脂及PI/TPNCE复合材料的介电、力学等性能进行了分析。结果表明,TPNCE树脂冲击强度达到14.2 kJ/m2,比BCE提高近一倍,固化温度下降了约43℃,与PI纤维界面结合较好,且保持较低的介电常数和介电损耗;PI/TPNCE复合材料0°拉伸强度达到1 485 MPa,弯曲强度达到758 MPa,压缩强度达到322 MPa,7~18 GHz范围内介电常数保持在3.15左右,介电损耗因子在0.005~0.0075之间,玻璃化转变温度为197℃,密度为1.28 g/cm3。本研究实现了高强高模PI纤维与氰酸酯树脂复合的重要突破,为轻质高强结构-功能一体化复合材料的设计和选材提供了新思路。   相似文献   

13.
为验证复合材料的耐久性,对T700碳纤维增强环氧树脂基复合材料经自然老化后的微观形貌、表面元素含量、热性能与力学性能等进行了研究。结果表明: 在光氧老化与热氧老化的共同作用下,T700碳纤维增强EP-A环氧树脂基(T700/EP-A)复合材料表层树脂将发生老化降解,并且随自然老化时间的延长,T700/EP-A复合材料的玻璃化转变温度逐渐降低,未老化试样的玻璃化转变温度为207℃,经过自然老化处理3年后,其玻璃化转变温度降低为180℃,延长自然老化时间至5年时,其玻璃化转变温度进一步降低至172℃。而自然老化过程对复合材料力学性能可能同时存在着增强效应与损伤效应,因此造成了T700/EP-A与T700/EP-B复合材料的不同力学性能表现出相异的变化趋势。随自然老化时间延长,T700/EP-A与T700/EP-B复合材料纵向拉伸强度表现出先升高后降低的趋势,纵向弯曲强度表现出逐渐升高的趋势,纵向压缩强度与层间剪切强度存在波动,未呈现出明显变化。   相似文献   

14.
合成了乙炔基苯基偶氮酚醛树脂(EPAN),通过溶液共混的方法用其对含硅芳炔树脂(PSA)进行改性,研究了PSA-EPAN树脂的热性能,并制备了PSA-EPAN的碳布预浸料,经热模压制备碳纤维布(T300CF)增强PSA-EPAN复合材料,对其力学性能进行了研究。结果表明:EPAN均匀分布于PSA树脂中,EPAN共混改性PSA树脂的固化温度提高,混入质量分数为7%的EPAN,N2中固化PSA-EPAN树脂在800℃残留率超过90%,其玻璃化转变温度高于500℃,PSA-EPAN共混树脂浇铸体的弯曲性能高于PSA树脂,达40.7 MPa,提高了95.5%;PSA树脂经T300CF/PSA-EPAN复合材料力学性能显著提高,弯曲强度达到了423.5 MPa,提高了74%,层间剪切强度(ILSS)提高至29.53 MPa,增加了65%。  相似文献   

15.
对以平纹织物为增强体的混杂纤维复合材料(HFRP)的刚度和强度进行研究。设计热压工艺并制备7组具有不同混杂比的玄武岩纤维-碳纤维(玄-碳)混杂增强环氧树脂基复合材料试样进行拉伸试验。基于平纹织物的结构特征,对传统混合定律加以修正,提出以平纹织物为增强体的HFRP刚度估算模型。基于HFRP层合板的破坏机制,提出材料仅发生一次破坏的临界混杂比,并分成三个混杂比范围给出强度估算模型。最终以体现分散度的混杂效应系数对估算结果加以修正。结果表明:计算值与试验值近似,预估模型计算所得临界混杂比与试样拉伸试验时的应力-应变曲线分析结果相符,模型可为今后的实际应用提供理论依据。本文提出的预估方法可以反应混杂比和分散度对平纹织物为增强体的HFRP强度和刚度的影响,扩展了混合定律的应用范围。  相似文献   

16.
通过正交试验新研制出一种可以与玻璃纤维/BA9913环氧树脂预浸料低温共固化的高阻尼黏弹性材料,提出使用四氢呋喃(THF)作为溶剂,将该高阻尼材料制成黏弹性材料溶液。采用双面刷涂工艺,将玻璃纤维/BA9913环氧树脂复合材料制成带阻尼薄膜的预浸料,按照设计的铺层根据热压罐固化工艺制成嵌入式低温共固化高阻尼复合材料试件。模态试验和层间剪切试验验证了本文所提出制作工艺和黏弹性材料组分的有效性,试件一阶模态损耗因子可达7.2%。为嵌入式低温共固化高阻尼复合材料的广泛使用奠定了基础。   相似文献   

17.
高导热低填量聚合物基复合材料在电子封装和大功率电子设备等领域有着巨大需求。通常高导热聚合物是通过在高分子基体中均匀分散高含量的导热填料来实现的,然而较高填料含量会极大地恶化复合材料力学性能和提升材料经济成本,因此高填量复合材料很难满足当前工业应用上的需求。综述了近年来高导热低填量聚合物基复合材料制备研究进展,简要介绍了导热机制和影响低填量聚合物基复合材料导热性能的主要因素,按照不同填料类型介绍了一些热导率高于1.0 W/(m·K)且填充量低于10vol%的高导热低填量聚合物基复合材料的制备方法和研究进展,展望了高导热低填量聚合物基复合材料的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号