首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Floods are among the most costly natural disasters interms of human sufferings and economic losses inBangladesh. Approximately 20% of the countryexperiences normal annual flooding while all thehistorical catastrophic floods inundated more thanfifty percent of the country's total area. The recentflood in 1998 has been found to be more severe thanall previous floods. During the flooding season of1998, the Flood Forecasting and Warning Center (FFWC)of the Bangladesh Water Development Board (BWDB)prepared daily flood bulletin and incorporatedinformation about rainfall, rise/fall of riverwater, flood forecasting for 24 and 48 hr inadvance and warning messages (if any). The FFWCattempted to provide adequate services to the localand national level decision-making process. Theforecasting procedure adapted by the FFWC was based onhydrological information, forecaster's experience, andmodel simulation. This paper primarily examines therole and activities of the FFWC, especially in floodforecasting and warning. Identification of the causesand consequences of 1998 flood is the other pertinentarea of discussion of the paper.Findings of this research revealed that the flood of1998 was caused by heavy downpour in the upstream thatwas drained out through the major rivers inBangladesh. Three major rivers' peak was synchronizedand characterized it as the most prolonged flood inthe history of Bangladesh. It also revealed that,despite various limitations, the flood forecasts ofthe FFWC were reasonably adequate to meet nationaldemand during the crises of 1998.  相似文献   

2.
Ahmad  Q. K. 《Natural Hazards》2003,28(1):191-198
Bangladesh is known to behighly vulnerable to floods. Frequent floods have put enormous constraints on its development potential. Unfortunately, the frequency of high intensity floods is on the rise. So far the country has struggled to put a sizeable infrastructure in place to prevent flooding in may parts of the country with limited success. In recent times, it was found that losses of lives and valuable assets could be significantly minimized by implementing non-structural measures including the improvement of flood forecasting and warning system. The existing flood forecasting and warning capacity of Bangladesh could be more effective if real-timedata could be acquired from upstreamareas within the Ganges-Brahmaputra-Meghna (GBM) catchment, where runoff is generated. In order to do so, Bangladesh needs to foster an effective regional cooperationwith the other GBM regional countries of India, Nepal, and Bhutan. This article examines how GBM regional cooperation could be useful towards managing floods in Bangladesh in particularand the region in general.  相似文献   

3.
Bangladesh is highly vulnerableto floods due to its geographical location at the deltas of the Ganges, Brahmaputra and Meghna (GBM) rivers. About 92.5 per cent of the area of three basins lies outside the boundaries of the country. More than 80 per cent of the annual precipitation of Bangladesh occurs in the monsoon period between June and September. The hydro-meteorological characteristics of the three river basins are unique and they often cause large to extremely large floods in Bangladesh. It is possible that these floods could inundate 70 per cent of the country and the physical damage could be very serious for the economy of Bangladesh with its low gross domestic product (GDP). In 1987, 1988 and 1998, Bangladesh experienced three extreme floods, leaving trails of devastation and human misery. In this article it is demonstrated that these floods differed in terms of magnitude, extent, depth and duration. The external and internal hydro-meteorological dynamics were also different.  相似文献   

4.
Of the world's great rivers, the Ob and Yenisey rank among the largest suppliers of fresh water and among the smallest suppliers of suspended sediment to the coastal ocean. Sediment in the middle reaches of the rivers is mobilized from bordering terraces and exchanged between channels and flood plains. Sediment in the lower reaches of these great rivers is deposited and stored (permanently, on a millennial time scale) in flood plains. Sediment discharges, already small under natural conditions, are diminished further by large manmade reservoirs that trap significant proportions of the moving solids. The long winter freeze and sudden spring breakup impose a peakedness in seasonal water runoff and sediment discharge that contrasts markedly with that in rivers of the tropics and more temperate climates. Very little sediment from the Ob and Yenisey rivers is being transported to the open waters of the Arctic Ocean under present conditions.  相似文献   

5.
以年极端洪水超标率来反映区域极端洪水, 分析了新疆区域极端洪水变化; 以年最大洪峰记录分析了天山山区主要河流极端洪水变化规律, 并用14站资料分析了天山山区气候变化特征, 讨论了天山主要河流极端洪水变化对区域气候变化的响应. 结果表明: 受气候变暖影响, 1957-2006年全疆极端洪水呈区域性加重趋势, 尤其南疆区域极端洪水明显加剧, 北疆区域也有加重趋势, 但相对较缓. 全疆及北疆、 南疆在20世纪90年代中期以来都处于洪水高发阶段. 近50 a来, 在新疆区域洪水呈加重趋势的变化背景下, 发源于天山南坡的托什干河和库玛拉克河年最大洪峰流量呈显著增加趋势, 发源于天山北坡的玛纳斯河与乌鲁木齐河年最大洪峰流量虽有增加, 但是变化趋势较缓. 以年最大洪峰流量发生转折年为界, 天山典型流域托什干河、 库玛拉克河、 玛纳斯河和乌鲁木齐河在20世纪90年代(或80年代)以来与前期相比, 呈现出相似的变化特征: 年最大洪峰流量明显增大, 年际间变化更加剧烈, 洪水年更频繁. 以年最大洪峰流量发生转折年份为界, 玛纳斯河、 托什干河和乌鲁木齐河后期的年最大洪峰集中日期较前期推迟2~9 d, 库玛拉克河却提前5 d. 玛纳斯河、 乌鲁木齐河和库玛拉克河后期的集中度较前期增加0.8%~8.3%, 托什干河减小1.1%. 1961-2010年, 新疆天山山区气温明显上升, 升温率为0.34 ℃·(10a)-1, 1997年以后明显增暖; 天山山区降水显著增加, 增加速率15.6 mm·(10a)-1, 同时极端降水强度增大、 频数增多. 近50 a来天山主要河流极端洪水变化与区域增温以及天山山区极端降水事件增多等有密切关系.  相似文献   

6.
Bangladesh has been experiencing floods more frequently than ever before. Since 1947, she has been hit by extremely devastating floods in 1954, 1955, 1956, 1962, 1963, 1966, 1968, 1969, 1970, 1971, 1974, 1976, 1984, 1987, and 1988. Each year's highest flood record and damage costs have been broken by that of the subsequent year. All means of communication become paralysed. People lose food grains, domestic animals, homesteads, and lives. They remain marooned without food and drinking water until relief arrives. Despite huge spending on flood control, the intensity of the floods has been increasing. Therefore, speculation is naturally rife about the causes.The aim of this paper is to identify the factors which contribute to these devastating floods, and then to recommend an appropriate strategy for effective flood control. The geography, geology, and hydrology of Bangladesh are briefly discussed. The whole of the country is a huge river basin criss-crossed by as many as seven hundred rivers, tributaries, and distributaries, having a total length of 22 155 km.The river-beds are rendered shallow by heavy deposits of alluvial earth each year and tend easily to cause inundations. The quantum of silt carried by the river systems into Bangladesh is estimated to be 2.4 × 109 tonnes/yr.Disciplining the rivers means keeping the rivers navigable all year round, removing excessive deposits of silt where they threaten to block a channel, preventing widening by erosion, contracting the width where the river is excessively wide, and last but not least, preventing construction whose eventual impact might prove harmful.Natural disasters do not respect political frontiers, nothing can stop them, but their adverse impact could be minimised. The author emphasises the need for employing the abundant cheap manpower, local materials, and indigenous technology for flood control projects.  相似文献   

7.
Sumiko Kubo 《GeoJournal》1993,31(4):313-318
The northwest region of Bangladesh is divided into four geomorphological units which show different flood features. The region has suffered severe flood damage both in 1987 and 1988. After these floods Bangladesh Action Plan for Flood Control was established by the World Bank. In the northwest region the plan proposed two major projects, namely, an interceptor drain and a diversion channel. A Polder Project is also going on in this region. However these major projects are mainly on structural methods and require much cost for long embankments. The author suggests smaller but reasonable projects combining structural and non-structural methods in the region.  相似文献   

8.
中小河流山洪预警预报系统开发设计及应用   总被引:1,自引:1,他引:0  
胡健伟  刘志雨 《水文》2011,31(3):18-21
我国中小河流众多,山洪频发,洪灾损失严重,是造成人员伤亡的主要灾种。目前,我国中小河流山洪预报预警技术研究还处于初步阶段,山洪监测预警系统尚在试点建设中。介绍水利部公益性项目"中小河流突发性洪水监测与预警预报技术研究"开发的中小河流山洪预警预报原型系统,包括基于分布式水文模型、动态临界雨量的山洪预警预报方法,山洪预警预报原型系统的总体结构、软件设计与功能实现,以及在其中一个示范区江西遂川江的试运行情况,并对其实际应用进行了分析,以期为当前所开展的中小河流洪水易发区水文监测预警项目及全国山洪灾害防御非工程措施建设等工作提供参考。  相似文献   

9.
In the middle of 2007, a severe flood affected the People’s Republic of Bangladesh. This is a natural disaster that takes people’s lives, destroys livestock, infrastructures and communication systems and, damages crops and fish ponds. Despite many adverse impacts, the flood situation is an accepted phenomenon to the citizens of Bangladesh, due to the immense increase of soil fertility due to the flood, plus, the recharge of aquifer, ecosystem and fish. The flood of 2007 was the 5th major flood of the last 20 years when more than thirty-five percent of the area of the country was inundated with flood water. As in the past, the flood of 2007 had its own significance. The geography of the country contains a floodplain delta of three major river basins: the Ganges, the Brahmaputra and the Meghna (GBM). The mean monthly rainfall plot from the TRMM satellite data has shown that for both the Meghna and Brahmaputra basins, the rainfall was higher during July 2007 than any other months of the last 2 years. This excess rainfall had accumulated in the Brahmaputra and Meghna rivers and carried downstream to Bangladesh. This was the main cause of the flooding in 2007. The first crossing above the danger level of the river waters was observed at Durgapur station of the Someswari and at Sunamganj station of the Surma on the nineteenth of July, 2007 inside Bangladesh. In terms of magnitude of the peak and duration of the flood, the Brahmaputra was higher in 2007 than during 2004. However, the Ganges river water level never crossed the danger level during flood of 2007. The Meghna was lower during the flood peak for the duration of the flood in 2007. The year–to-year variability in both the magnitude and duration of the flood suggests changes in rainfall and landuse pattern of the catchment.  相似文献   

10.
The 4th IPCC report highlights the increased vulnerability of the coastal areas from floods due to sea-level rise (SLR). The existing coastal flood control structures in Bangladesh are not adequate to adapt these changes and new measures are urgently necessary. It is important to determine the impacts of SLR on flooding to analyse the performance of the existing structures and corresponding impact to plan for suitable adaptation and mitigation measures to reduce the impacts of floods on coastal zone. The study aims to develop a comprehensive understanding of the possible effects of SLR on floods in the coastal zone of Bangladesh. A hydrodynamic model, which is a combination of surface and river parts, was utilized for flood simulation. The tool was applied under a range of future scenarios, and results indicate both spatial variability of risk and changes in flood characteristics between now and under SLR. Estimated impact on population, infrastructure and transportation is also exposed. These types of impact estimation would be of value to flood plain management authorities to minimize the socio-economic impact.  相似文献   

11.
Nowadays, in parts of Iran, rivers and flood plains are being used as sand and silt mines, and the removal of river bed materials is performed without studying its effects on hydraulic behavior. On the other hand, the flood plain lands are in danger of floods and bank erosion. Zaremrood River in Tajan watershed due to removal of river bed material, two planes of before and after removal with scale of 1:1,000, has been used as basic data. The field investigation was emphasized on the end part of Zaremrood with a length of 5 km and starts from Ghandikola village to Ahoodasht Bridge. Using total station and field observations, the characteristics of reaches and cross sections of right bank, left bank, and main bed of river are written separately. Using software of HEC-RAS, ArcView 3.2, and extension HEC-GeoRAS, the flood zoning with different return periods to investigate water velocity and its changes, geometrical simulation of the bed, sides and flood way of rivers, and then by entering the results of HEC-GeoRAS into hydraulic software HEC-RAS for two before and after planes have been performed, and flow velocity was analyzed for three return periods of 10, 50, and 100 years. The results of this research showed that the velocities due to removal for floods with different return periods have increased, whereas water height and level during removal period have decreased.  相似文献   

12.
The recurrent flooding during monsoon and subsequent waterlogging in the northern Bihar plains and the magnitude of losses due to these hazards indicate the continuing vulnerability of the region to flood and waterlogging. Management of floods and waterlogging hazards in highly flood-prone regions of India, including Bihar state has been largely response oriented with little or no attention to mitigation and preparedness. This paper presents a method for spatial, Geographic Information Systems-based assessment of flood and waterlogging vulnerability and risk in northern Bihar plains. Multitemporal satellite data was used to evaluate the area statistics and dynamics of waterlogging over the period from 1975 to 2008. The flood proneness is evaluated at district level with reference to flood inundation during a period from 1998 to 2008. Census data were used to examine the socio-economic characteristics of the region through computation of population density, cultivators, agricultural labourers, sex ratio, children in age group 0–6 years and literates. The geohazard map derived by combining area prone to waterlogging and flood inundation was multiplied with socio-economic vulnerability map to derive the flood-waterlogging risk map of the region. The result shows that flood and water-logging pose highest risk to the central districts in the northern Bihar plains with 50.95% of the total area under high and very high risk.  相似文献   

13.
新疆河流洪水与洪灾的变化趋势   总被引:32,自引:11,他引:21  
吴素芬  张国威 《冰川冻土》2003,25(2):199-203
在西北气候由暖干转向暖湿的过程中,新疆河流的洪水和洪灾反映明显.对新疆29条河流选取年最大洪水,统计出超标准洪水、20a一遇、50a一遇洪水的出现频次进行分析,结果显示1987年后洪水量级、洪水频次呈增加的变化趋势.通过20世纪90年代以来灾害性洪水出现的频次、灾害损失的变化比较分析,90年代以来灾害性洪水尤其是灾害性暴雨洪水和突发性洪水呈现增加的态势,1987—2000年的灾害损失与1950—1986年相比增加了30倍.  相似文献   

14.
大规模人类活动与洪水灾害──从历史到现实   总被引:8,自引:0,他引:8       下载免费PDF全文
周魁一 《第四纪研究》1999,19(5):423-429
自然灾害是由于异常变异所引发,表现出它的自然属性。此外,作为承灾体的人类社会对洪水的影响也是不容忽视的。大规模的人类活动有制约洪水为害的一面,也有促使灾害增长的负面影响。因此,灾害又具有社会属性。本文主要探讨大规模人类活动如何影响洪水灾害,以及相应的完善防洪方针的途径。  相似文献   

15.
In this paper, we present the changing properties of losses due to occurrences of droughts, floods and typhoon disasters in the Guangdong province, a comparatively economically prosperous province in the south China. Influences of typhoon activities on droughts and floods are also analysed. Results based on extensive and thorough investigations indicate that (1) generally, Guangdong province is both humid and warm; however, in recent decades, the negative impacts of droughts seem to be enhancing, which is proved by increasing drought-induced economic loss. In this sense, considerable importance should be attached to droughts, but not solely to floods, in the Guangdong province; (2) low-lying terrain of the Guangdong province makes this region easy to be influenced by flood inundation. Moreover, highly urbanized areas are mostly located in the low-lying areas. Flood-induced loss was increasing before 1990s and is decreasing after 1990s, and this should be attributed mainly to seasonal shifts of precipitation changes and enhancing human mitigation to flood disasters; (3) typhoon activities often inflict considerable loss on the economy of the Guangdong province. Moreover, flood events in the study region are mostly the results of typhoon activities. Flash floods, strong wind and storm surge accompanying typhoon activities are the major factors intensifying the negative impacts of the typhoon disasters.  相似文献   

16.
Faisal  I. M.  Kabir  M. R.  Nishat  A. 《Natural Hazards》2003,28(1):85-99
The disastrous flood of 1998 was a result of excessiverainfall all over the catchment areas of the major rivers of Bangladesh. Dhaka City, which is surroundedby rivers on all sides, was seriously affected despite the completion of Phase I of the Dhaka IntegratedFlood Protection Project (DIFPP). Water entered into the protected part of the city throughhydraulic leakage such as buried sewerage pipes, breached and incomplete floodwalls, ungated culverts andinoperative regulators. The drainage network and retention ponds of the city were found to be in poorconditions and capacities of the pumping stations were found inadequate. There was a serious lack of coordinationbetween the agencies responsible for flood protection and drainage of the city. These issues must beaddressed to achieve long-term flood mitigation. In addition, feedback from both the experts andgeneral public indicated that completion of Phase II of DIFPP was essential to bring the eastern part ofthe city under flood protection. Other structural measures suggested in this paper include installing andmaintaining adequate drainage and pumping capacity and timely operation of regulators. This studyalso suggests a set of non-structural measures for flood mitigation that include protectingthe retention ponds, raising public awareness on maintaining the city drains, introducing landzoning and flood proofing in the eastern part of Dhaka, and stream lining institutional bottlenecks.  相似文献   

17.
三峡水库汛期控制水位及运用条件   总被引:2,自引:2,他引:2       下载免费PDF全文
王俊  郭生练 《水科学进展》1990,31(4):473-480
随着长江上游梯级水库的陆续建成投运,三峡水库的水文情势和功能需求与设计条件相比发生了显著变化,仍维持固定的汛限水位运行已不能适应新形势需求。本文通过辨析三峡水库设计阶段汛限水位的设置条件,挖掘流域洪水特性和洪水遭遇规律,论证三峡水库汛期运行水位动态控制的可行性。结果表明:① 三峡水库设计推求的汛限水位145 m的适用条件是应对流域性大洪水,而流域性洪水发生概率小且特征明显,可以通过水文水情分析提前预判。② 根据流域洪水类型、洪水分期和遭遇规律,预判发生区域性大洪水时,三峡水库6月初至梅雨期结束汛限水位按145 m设置,从梅雨期结束后逐渐提高水位,8月20日后过渡到155 m。③ 在考虑上游水库群联合调度和气象水文预报的配合下,正常年份三峡水库汛期运行水位可在155 m上下浮动,并考虑提前蓄水。④ 三峡水库汛期运行水位动态控制,不会增加防洪风险和库区淤积风险,对中下游江湖关系和水文情势有利,可显著提高发电、航运、生态保护和供水等综合利用效益。  相似文献   

18.
This paper examines the nature and causes of September 2004 hazardous flood that affected the dry and drought prone southwestern region of Bangladesh. It also examines human perception of this new hazard and their methods of adjustments to its negative impacts. Field research for this study includes personal interviews of 453 victim families living in four thanas (lowest administrative units) in Jessore and Satkhira districts of southwestern Bangladesh. Findings of the study suggest that all victim respondents viewed this flood event as a natural hazard, which has caused severe damage to standing crops, fish ponds, permanent trees and homesteads, and deteriorated human health and sanitation conditions. Its long-term impacts on fish farming, soil quality degradation, as well as changing land use/land coverage are also noteworthy but yet to be adequately explored. Both perceived and scientific causes of this flood event include high rainfall for a week before the flood, unusual movement of low pressure system into the affected area, cloudy weather and low evaporation, siltation of the regional riverbeds, and rolling back of the Ganges River water through the Ichamati and Bhagirati rivers. These factors also caused hazardous flooding at the same time in the Ichamati and Bhagirati Rivers and their floodplains in the West Bengal province of India. To release the overflow of flood water inside India, the Indian border patrol breached the Ichamati river embankment in several places along Satkhira and Jessore international border which had aggravated the flood situation in the study area.  相似文献   

19.
王俊  郭生练 《水科学进展》2020,31(4):473-480
随着长江上游梯级水库的陆续建成投运,三峡水库的水文情势和功能需求与设计条件相比发生了显著变化,仍维持固定的汛限水位运行已不能适应新形势需求。本文通过辨析三峡水库设计阶段汛限水位的设置条件,挖掘流域洪水特性和洪水遭遇规律,论证三峡水库汛期运行水位动态控制的可行性。结果表明:①三峡水库设计推求的汛限水位145 m的适用条件是应对流域性大洪水,而流域性洪水发生概率小且特征明显,可以通过水文水情分析提前预判。②根据流域洪水类型、洪水分期和遭遇规律,预判发生区域性大洪水时,三峡水库6月初至梅雨期结束汛限水位按145 m设置,从梅雨期结束后逐渐提高水位,8月20日后过渡到155 m。③在考虑上游水库群联合调度和气象水文预报的配合下,正常年份三峡水库汛期运行水位可在155 m上下浮动,并考虑提前蓄水。④三峡水库汛期运行水位动态控制,不会增加防洪风险和库区淤积风险,对中下游江湖关系和水文情势有利,可显著提高发电、航运、生态保护和供水等综合利用效益。  相似文献   

20.
Turkey often suffers from flood-related damages and causalities as a result of intense and prolonged storms that are usually convective or cyclonic in origin. The impact is more distinctive in Aegean and Mediterranean coasts of the country where quantity and distribution of rainfall is influenced by Mediterranean cyclones, especially in late autumn and early winter. The floods sometimes became very hazardous when combined with urbanization effects, especially in the densely populated coastal communities and major cities. Severe weather was marked in the early parts of September 2009 that produced record-setting rainfall amounts across the Marmara region of Turkey and led a series of flash floods which affected ?stanbul and Tekirda? provinces especially. The overall flooding was the result of successive and persistent intense rainfall episodes over a 3-day period which produced more than 250-mm rainfall over portions of the region. The floods resulted in death of 32 people and caused extensive environmental and infrastructural damage in the region. This study provides in-depth analysis of hydrometeorological conditions that led to the occurrence of flash floods in Marmara region during 7–10 September 2009 period and also discusses non-meteorological factors that exacerbated the flooding conditions. Main meteorological settings that led to intense storms were presence of cold air in the upper atmosphere, a slow-moving quasi-stationary trough, and continuous resupply of moisture to the surface low from the warm Aegean Sea. Radar images showed the development of clusters of convective cells that remained quasi-stationary over portions of the region. The 24-h rainfall amounts varied between 100 and 253 mm in most parts of the region during the flooding period with diverse spatial patterns. The southern locations received the highest amount of the rainfall as compared to stations located in northern slopes of the region. Typical effects of orography that enhance rainfall in the coastal areas, however, were not observed during the Marmara flood. Some features of the synoptic pattern observed prior and during the flooding period, supported the back door cold front concept. This is characterized with easterly to northeasterly surface flows forced by an anticyclone, advection of cold continental air over the warm Black Sea which provided anomalous moisture to trigger cyclogenesis over the Marmara region, and falling of core of the intense rainfall over the Marmara Sea. The study concluded that although the meteorological settings were favorable for the convective rainfalls, urbanization factors, such as land use changes and occupation of flood plains, played major role in aggravating the worst flood observed in the region in recent decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号