首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NIST glass certified reference materials, SRM 610-617, have been widely adopted by the geological community as calibration samples for a variety of in situ trace element analytical techniques. There is now an urgent requirement for similar reference materials for in situ isotopic analytical techniques. We have analysed SRM 610, 612 and 614 for their Pb, Sr and Nd isotopic compositions using thermal ionisation mass spectrometry. Large differences in isotopic composition were observed between each CRM, suggesting a significant trace element content in the initial starting material (base glass). As a result, isotopic compositions for one CRM cannot be extrapolated to another, and each must be calibrated for use independently. We present the first compilation of working values for these glasses.  相似文献   

2.
We present data on the concentration, the isotope composition and the homogeneity of boron in NIST silicate glass reference materials SRM 610 and SRM 612, and in powders and glasses of geological reference materials JB-2 (basalt) and JR-2 (rhyolite). Our data are intended to serve as references for both microanalytical and wet-chemical techniques. The δ11 B compositions determined by N-TIMS and P-TIMS agree within 0.5% and compare with SIMS data within 2.5%. SIMS profiles demonstrate boron isotope homogeneity to better than δ11 B = 2% for both NIST glasses, however a slight boron depletion was detected towards the outermost 200 μm of the rim of each sample wafer. The boron isotope compositions of SRM 610 and SRM 612 were indistinguishable. Glasses produced in this study by fusing JB-2 and JR-2 powder also showed good boron isotope homogeneity, both within and between different glass fragments. Their major element abundance as well as boron isotope compositions and concentrations were identical to those of the starting composition. Hence, reference materials (glasses) for the in situ measurement of boron isotopes can be produced from already well-studied volcanic samples without significant isotope fractionation. Oxygen isotope ratios, both within and between wafers, of NIST reference glasses SRM 610 and SRM 612 are uniform. In contrast to boron, significant differences in oxygen isotope compositions were found between the two glasses, which may be due to the different amounts of trace element oxides added at ten-fold different concentration levels to the silicate matrix.  相似文献   

3.
The SRM 600 series of glasses, SRM 611 to SRM 619, which nominally contain 500 (SRM 610, 611), 50 (SRM 612, 613), 1 (SRM 614, 615) and 0.02 (SRM 616, 617) μg g−1 of sixty one elements are now being extensively used as microprobe standards. Recent compilations of the trace element concentrations, which include many new multi-element bulk analyses, do not all give the same value within the stated uncertainty; this observation appears to raise questions about the degree of homogeneity on a microscale reported from probe measurements. The ion microprobe cannot give absolute concentrations, but can accurately measure the abundance ratios between glasses of similar major element chemistry. Recent and new probe measurements show that, although the absolute concentrations are significantly lower than the nominal values, the average dilution factors are 12 : 1 : 0.02 : 0.0004 and close to weighed amounts. The consistency between the ratios of random samples of glasses (SRM 610/SRM 612 and SRM 611/SRM 613) strongly supports a high degree of homogeneity on all scales. The measured abundance ratios between two glasses can, therefore, act as a useful check on bulk measurement accuracy. A clear correlation in the SRM 610, 611/SRM 612, 613 ratios measured by ion probe and SRM 612 trace concentrations measured by bulk techniques demonstrates that SRM 610, 611 has a much more uniform trace content than SRM 612, 613.  相似文献   

4.
We present new concentration data for twenty four lithophile trace elements in NIST certified reference material glasses SRM 610-SRM 611 in support of their use in microanalytical techniques. The data were obtained by solution ICP-MS and isotope dilution TIMS analysis of two different sample wafers. An overall assessment of these new results, also taking into account ion probe studies that have been published in the literature, shows that these wafers can be considered to be homogeneous. Therefore, individually analysed wafers are believed to be representative of the entire batch of the SRM 610-611 glasses. Possible exceptions are the alkali metals (and a few volatile or non-lithophile trace elements). The analysed concentrations range between 370 μg g−1 (Cs) and 500 μg g−1 (Sr) and agree well with published values. On the basis of our new data and data recently published in the literature we propose "preferred average" values for the elements studied. These values are, within a few percent, identical to those proposed by other workers.  相似文献   

5.
Isotope dilution determinations of Lu, Hf, Zr, Ta and W are reported for nine test portions (five for W) of NIST SRM 610 and 612 glass wafers. Additionally, all test portions were analysed for their Hf isotope compositions. In general, high field strength elemental (HFSE) distributions in NIST SRM 610 and 612 were reproducible to ~± 1%, except for Zr (± 5%) in NIST SRM 612, and absolute reported concentrations agreed with previously published values, but with higher precision. The slightly worse reproducibility of Zr in NIST SRM 612 compared to other HFSE is interpreted to result from analytical scatter, rather than sample inhomogeneity. The analyses demonstrated elemental homogeneity for both glass wafers for samples of 1–2 mg with respect to the precision of the method, i.e., ± 1% or better. Average Hf isotope compositions for both glass wafers agreed within uncertainty and the weighted average of all determinations yielded a mean 176Hf/177Hf ratio of 0.282111 ± 0.000009 (95% confidence level). However, although mean values for NIST SRM 610 and 612 agreed within analytical limits, NIST SRM 610 test portions showed a tendency of systematically elevated isotope composition of ~ 0.5 ?Hf units when compared to NIST SRM 612, which may indicate a slightly more radiogenic Hf isotope composition of NIST SRM 610. The results of this study suggest that NIST SRM 610 and 612 are valuable calibrators for HFSE in situ analyses within the given uncertainties.  相似文献   

6.
Extensive compositional heterogeneity is shown to affect at least twenty four of the doped trace elements in the NIST SRM 610-617 glasses.
Compositional profiling and mapping using laser ablation ICP-MS reveals that all NIST SRM 610-617 wafers examined here contain domains that are significantly depleted in Ag, As, Au, B, Bi, Cd, Cr, Cs, Mo, Pb, Re, (Rh), Sb, Se, Te, Tl and W, and antithetically enriched in Cu (and Pt), with large enrichments in Cd, Fe and Mn also being encountered in some cases. These domains are visible in doubly polished wafers by unaided visual inspection and by transmitted light and schlieren microscopy. They occur in close proximity to the wafer perimeters and also as stretched and complexly folded forms within wafer interiors. The chemical and optical properties of these heterogeneous domains are consistent with those of compositional cords, a phenomenon of glass manufacture where glass bulk composition and physical properties are modified by loss of volatile components from the molten glass surface. The NIST SRM 610-617 glasses may be considered reliable reference materials for microanalysis of only between one half and two thirds of the trace elements with which they were doped, including Be, Mg, Sr, Ba, Sc, Y, REE, V, Zr, Hf, Nb, Ta, Th, U, Ga, In, Sn, Co, Ni and Zn. These elements show no evidence of significant heterogeneity, indicating that the original glass constituents and possible residues remaining in the furnace from preceding glass batch fusions were well homogenised during manufacture.  相似文献   

7.
We present data for the concentrations of eleven rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Yb, Lu) in eleven international geochemical reference materials obtained by isotope dilution multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). We have analysed both rock powders and synthetic silicate glasses, and the latter provide precise data to support the use of these as reference materials for in situ trace element determination techniques. Our data also provide precise measurements of the abundance of mono-isotopic Pr in both glasses and powders, which allows more accurate constraints on the anomalous redox-related behaviour of Ce during geochemical processes. All materials were analysed in replicate providing data that typically reproduce to better than one percent. Sm/Nd ratios in all these materials also reproduce to better than 0.2% and are accurate to < 0.2% and can thus be used as calibrants for Sm-Nd geochronology. Our analyses agree well with existing data on these reference materials. In particular, for NIST SRM 610, USGS BHVO-2, AGV-1 and AGV-2, our measured REE abundances are typically within < 2% (and mostly 1%) of REE concentrations previously determined by isotope dilution analysis and thermal ionisation mass spectrometry, consistent with the higher degree of precision and accuracy obtained from isotope dilution techniques. Close agreement of results between basaltic glass reference materials USGS BHVO-2G and BCR-2G and the BHVO-2 and BCR-2 powders from which they were created suggests that little fractionation, concentration or dilution of REE contents occurred during glass manufacture.  相似文献   

8.
A combination of EMPA, sensitive high resolution ion microprobe (SHRIMP II) and/or LA-ICP-MS techniques was used to measure the concentration of selenium (Se) in NIST SRM 610, 612, 614 and a range of reference materials. Our new compiled value for the concentration of Se in NIST SRM 610 is 112 ± 2 μg g−1. The concentration of Se in NIST SRM 612, using NIST SRM 610 for calibration, determined using LA-ICP-MS (confirmed using SHRIMP II) was 15.2 ± 0.2 μg g−1. The concentration of Se in NIST SRM 614, using LA-ICP-MS was 0.394 ± 0.012 μg g−1. LA-ICP-MS determination of Se in synthetic geological glasses BCR-2G, BIR-1G, TB-1G and the MPI-DING glasses showed a range in concentrations from 0.062 to 0.168 μg g−1. Selenium in the natural glass, VG2, was 0.204 ± 0.028 μg g−1.  相似文献   

9.
Preliminary results are given from an excimer 157 nm laser ablation multiple-collector inductively coupled plasma-mass spectrometer (LA-MC-ICP-MS), used for the isotopic measurements of solid materials. Elements of geological interest with different volatilities such as Pb and U (e.g. zircon geochronology) and Cu and Zn (as examples of geochemical/biochemical tracers) were analysed. The range of ablation rates of 20-150 nm s-1 enabled us to ablate the sample down to a depth of 45 μm for a 50 μm diameter pit. The Cu and Zn isotopic measurements gave values that were very stable with, on average, a 0.01 % standard error, comparable with that achieved in liquid mode measurements.  相似文献   

10.
Fifty elements in NIST SRM 614 and 616 glass reference materials were determined by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). The values determined for NIST SRM 614 agreed well with the NIST-certified and information values (mean relative difference ± 3.6%), except for B, Sc and Sb. The values determined for NIST SRM 616 agreed with the NIST-certified and information values within a mean relative difference of ± 1.5%, except for B, Sc and Ga. In addition, at an 80 μm sampling scale, NIST SRM 614 and 616 glass discs were homogeneous for trace elements within the observed precisions of 5 and 15% (mean), respectively. Detection limits were in the range 0.01 - 0.3 μg g−1 for elements of lower mass numbers (amu < 80) and 1 - 10 ng g−1 for heavy elements (amu > 80). Detection at the sub ng g−1 level is possible for most of the heavy elements by using an ablation pit size larger than 10 0 μm.  相似文献   

11.
Forty two major (Na, Mg, Ti and Mn) and trace elements covering the mass range from Li to U in three USGS basalt glass reference materials BCR‐2G, BHVO‐2G and BIR‐1G were determined using laser ablation‐inductively coupled plasma‐mass spectrometry. Calibration was performed using NIST SRM 610 in conjunction with internal standardisation using Ca. Determinations were also made on NIST SRM 612 and 614 as well as NIST SRM 610 as unknown samples, and included forty five major (Al and Na) and trace elements. Relative standard deviation (RSD) of determinations was below 10% for most elements in all the glasses under investigation. Consistent exceptions were Sn and Sb in BCR‐2G, BHVO‐2G and BIR‐1G. For BCR‐2G, BHVO‐2G and BIR‐1G, clear negative correlations on a logarithmic scale exist between RSD and concentration for elements lower than 1500 μg g‐1 with logarithmic correlation coefficients between ‐0.75 and ‐0.86. There is also a clear trend of increasing RSD with decreasing concentration from NIST SRM 610 through SRM 612 to SRM 614. These suggest that the difference in the scatter of apparent element concentrations is not due to chemical heterogeneity but reflects analytical uncertainty. It is concluded that all these glasses are, overall, homogeneous on a scale of 60 μm. Our first results on BHVO‐2G and BIR‐1G showed that they generally agreed with BHVO‐2/BHVO‐1 and BIR‐1 within 10% relative. Exceptions were Nb, Ta and Pb in BHVO‐2G, which were 14‐45% lower than reference values for BHVO‐2 and BHVO‐1. Be, Ni, Zn, Y, Zr, Nb, Sn, Sb, Gd, Tb, Er, Pb and U in BIR‐1G were also exceptions. However, of these elements, Be, Nb, Sn, Sb, Gd, Tb, Pb and U gave results that were consistent within an uncertainty of 2s between our data and BIR‐1 reference values. Results on NIST SRM 612 agreed well with published data, except for Mg and Sn. This was also true for elements with m/z 85 (Rb) in the case of NIST SRM 614. The good agreement between measured and reference values for Na and Mg in BCR‐2G, BHVO‐2G and BIR‐1G, and for Al and Na in NIST SRM 610, 612 and 614 up to concentrations of at least several weight percent (which were possible to analyse due to the dynamic range of 108) indicates the suitability of this technique for major, minor and trace element determinations.  相似文献   

12.
New analytical results are reported for rarely determined elements Be, B, Ge, As, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, W, Re, Ir, Pt, Au, Tl and Bi in MPI‐DING and USGS (BCR‐2G, BHVO‐2G, BIR‐1G) silicate glasses and the NIST SRM 610‐614 synthetic soda‐lime glasses using 193 nm ArF excimer laser ablation and quadrupole ICP‐MS. The method used involved external calibration against GOR132‐G for Ir and NIST SRM 610 for other elements, internal standardisation using Ca, and ablation with a crater diameter of 160 μm and a pulsed laser repetition rate of 10 Hz. Small amounts of nitrogen (5 ml min?1) were added to the central channel gas of the plasma to improve the limits of detection for most of these elements by a factor of 1.2–2.5 and to reduce the oxide interference level to 0.02% (ThO+/Th+). Under these conditions, the LODs for most of these rarely determined elements were within the range 0.1 to 10 ng g?1. The operating conditions that were required to minimise ICP‐induced fractionation (U+/Th+≈ 1) in the mode without nitrogen were accompanied by a 50–60% reduction in sensitivity for elements such as Ca, Au and Pt. In contrast, ICP‐induced fractionation could be minimised (U+/Th+≈ 1) with no loss of analyte sensitivity in the nitrogen mode. Interferences of CuAr+, ZnAr+, Cd+, Pb2+ and Sn+ on Pd+, Rh+, Cd+ and In+ were corrected. Oxide interferences were not considered due to their lower production rate. Analytical precision, as given by one relative standard deviation (% RSD) was less than 15% for most of the elements present at concentrations greater than 0.1 μg g?1. A significant negative correlation was found between logarithmic concentration and logarithmic RSD, with a correlation coefficient of ?0.76. This trend indicates that possible chemical heterogeneities for most of these elements are smaller than the analytical uncertainty. Our results for Be, B, Ge, Sb and W are generally in good agreement with their reference values. In contrast, other elements in many of the reference glasses have only information values, upper limits or even no values, which restrict any detailed evaluation of the accuracy of the determined values. However, concentrations from multiple isotopes of one element analysed in this study showed excellent agreement, which guarantee the quality of our data to a certain extent.  相似文献   

13.
The calcium isotopic composition of NIST SRM 915b and 1486 provided by the National Institute of Standards and Technology was analysed. The δ44/40Ca values of the two reference materials relative to NIST SRM 915a were: NIST SRM 915b =+0.72 ± 0.04‰ and NIST SRM 1486 =?1.01 ± 0.02‰. NIST SRM 1486 did not require any chemical separation prior to measurement.  相似文献   

14.
Molybdenum concentration and δ98/95Mo values for NIST SRM 610 and 612 (solid glass), NIST SRM 3134 (lot 891307; liquid) and IAPSO seawater reference material are presented based on comparative measurements by MC‐ICP‐MS performed in laboratories at the Universities of Bern and Oxford. NIST SRM 3134 and NIST SRM 610 and 612 were found to have identical and homogeneous 98Mo/95Mo ratios at a test portion mass of 0.02 g. We suggest, therefore, that NIST SRM 3134 should be used as reference for the δ–Mo notation and to employ NIST SRM 610 or 612 as solid silicate secondary measurement standards, in the absence of an isotopically homogeneous solid geological reference material for Mo. The δ98/95MoJMC Bern composition (Johnson Matthey ICP standard solution, lot 602332B as reference) of NIST SRM 3134 was 0.25 ± 0.09‰ (2s). Based on five new values, we determined more precisely the mean open ocean δ98/95MoSRM 3134 value of 2.09 ± 0.07‰, which equals the value of δ98/95MoJMC Bern of 2.34 ± 0.07‰. We also refined the Mo concentration data for NIST SRM 610 to 412 ± 9 μg g?1 (2s) and NIST SRM 612 to 6.4 ± 0.7 μg g?1 by isotope dilution. We propose these concentration data as new working values, which allow for more accurate in situ Mo determination using laser ablation ICP‐MS or SIMS.  相似文献   

15.
New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.  相似文献   

16.
Lead isotope ratio data were obtained with good precision and accuracy using a 266 nm femtosecond laser ablation (fLA) system connected to a multi‐collector ICP‐MS (MC‐ICP‐MS) and through careful control of analytical procedures. The mass fractionation coefficient induced by 266 nm femtosecond laser ablation was approximately 28% lower than that by 193 nm excimer laser ablation (eLA) with helium carrier gas. The exponential law correction method for Tl normalisation with optimum adjusted Tl ratio was utilised to obtain Pb isotopic data with good precision and accuracy. The Pb isotopic ratios of the glass reference materials NIST SRM 610, 612, 614; USGS BHVO‐2G, BCR‐2G, GSD‐1G, BIR‐1G; and MPI‐DING GOR132‐G, KL2‐G, T1‐G, StHs60/80‐G, ATHO‐G and ML3B‐G were determined using fLA‐MC‐ICP‐MS. The measured Pb isotopic ratios were in good agreement with the reference or published values within 2s measurement uncertainties. We also present the first high‐precision Pb isotopic data for GSE‐1G, GSC‐1G, GSA‐1G and CGSG‐1, CGSG‐2, CGSG‐4 and CGSG‐5 glass reference materials obtained using the femtosecond laser ablation MC‐ICP‐MS analysis technique.  相似文献   

17.
A simple, rapid and precise method is described for determining trace elements by laser ablation (LA)-ICP-MS analysis in bulk geological materials that have been prepared as lithium borate glasses following standard procedures for XRF analysis. This approach reliably achieves complete sample digestion and provides for complementary XRF and LA-ICP-MS analysis of a full suite of major and trace elements from a single sample preparation. Highly precise analysis is enabled by rastering an ArF excimer laser (λ= 193nm) across fused samples to deliver a constant sample yield to the mass spectrometer without inter-element fractionation effects during each analysis. Capabilities of the method are demonstrated by determination of twenty five trace elements (Sc, Ti, V, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba, REE, Hf, Ta, Pb, Th and U) in a diverse range of geological reference materials that includes peridotites, basalts, granites, metamorphic rocks and sediments. More than 90% of determinations are indistinguishable from published reference values at the 95% confidence level. Systematic bias greater than 5% is observed for only a handful of elements (Zr, Nb and U) and may be attributed in part to inaccurate calibration values used for the NIST SRM 612 glass in the case of Zr and Nb. Detection limits for several elements, most notably La, are compromised at ultra-trace levels by impurities in the lithium borate flux but can be corrected for by subtracting appropriate procedural blanks. Reliable Pb analysis has proved problematic due to variable degrees of contamination introduced during sample polishing prior to analysis and from Pt-crucibles previously used to fuse Pb-rich samples. Scope exists for extending the method to include internal standard element/isotope spiking, particularly where integrated XRF analysis is not available to characterise major and trace elements in the fused lithium borate glasses prior to LA-ICP-MS analysis.  相似文献   

18.
In this study the homogeneity of the zinc isotopic composition in the NIST SRM 683 reference material was examined by measuring the Zn isotopic signature in microdrilled sample powders from two metal nuggets. Zinc was purified using AG MP‐1M resin and then measured by MC‐ICP‐MS. Instrumental mass bias was corrected using the “sample‐standard bracketing” method and empirical external normalisation with Cu doping. After evaluating the potential effects of varying acid mass fractions and different matrices, high‐precision Zn isotope data were obtained with an intermediate measurement precision better than ± 0.05‰ (δ66Zn, 2s) over a period of 5 months. The δ66ZnJMC‐Lyon mean values of eighty‐four and fourteen drilled powders from two nuggets were 0.11 ± 0.02‰ and 0.12 ± 0.02‰, respectively, indicating that NIST SRM 683 is a good isotopic reference material with homogeneous Zn isotopes. The Zn isotopic compositions of seventeen rock reference materials were also determined, and their δ66Zn values were in agreement with most previously published data within 2s. The δ66Zn values of most of the rock reference materials analysed were in the range 0.22–0.36‰, except for GSP‐2 (1.07 ± 0.06‰, n = 12), NOD‐A‐1 (0.96 ± 0.03‰, = 6) and NOD‐P‐1 (0.78 ± 0.03‰, = 6). These comprehensive data should serve as reference values for quality assurance and interlaboratory calibration exercises.  相似文献   

19.
We report new data on the trace element concentrations of Mg, Cr, Mn, Co, Ni, Cu, Zn, Sr, Cd, Ba, La, Ce, Nd, Pb and U in USGS carbonate reference materials (MACS-1 and MACS-2) and compare solution ICP-MS and LA-ICP-MS trace element determinations on landfill calcites using calibration to different reference materials (MACS-1 and MACS-2 carbonate and NIST SRM 612 glass). Very good agreement (differences below 10% relative) was found between laser ablation and solution ICP-MS data for MACS-1 with higher concentrations of trace elements (values between 100 and 150 μg g−1), with the exception of Cu and Zn. Similarly good agreement was found for MACS-2 with lower trace element concentrations (units to tens of μg g−1), with the exception of Cr, Co and Zn. The MACS-1 reference material for calibration of LA-ICP-MS was found to be extremely useful for in situ determination of trace elements in real-world carbonate samples (landfill calcites), especially those present in calcite in higher concentrations (Mn, Sr, Ba; < 5% RSD). Less accurate determinations were generally obtained for trace elements present at low concentrations (∼ units of μg g−1). In addition, good agreement was observed between the instrument calibration to MACS and NIST SRM 612 glass for in situ measurements of trace elements in landfill calcites K-2, K-3 and K-4 (differences below 15% relative for most elements). Thus, the application of MACS carbonate reference materials is promising and points to the need for the development of new carbonate reference materials for laser ablation ICP-MS.  相似文献   

20.
Direct analysis of geological reference materials was performed by LA-ICP-MS using two Nd:YAG laser systems operating at 266 nm and 1064 nm. The aim of this work was to compare UV and IR laser ablation and to assess the potential of the technique for the quantitative bulk analysis of rocks, sediments and soils. The laser sampling process was investigated and the analytical performance of both systems was compared. The influence of the laser operating conditions and the nature of the matrix on ICP-MS response factors calculated for major, minor and trace elements was evaluated. Under consistent laser settings, the response factors appeared to be matrix dependent. For a given matrix, the response factors were also significantly different for the two lasers. Normalisation with a single matrix element was effective only for matrices with similar mineralogy. When operating at 266 nm instead of 1064 nm, matrix effects could be reduced but not overcome. However, variations of the response factors between the different matrices appeared to be similar within distinct groups of elements, reflecting geochemical associations. When using multiple internal standards, matrix effects but also effects of the laser wavelength, could be fully compensated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号