首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 340 毫秒
1.
本文合成了吡哆醇与锰(Ⅱ)、钴(Ⅱ)、铜(Ⅱ)和镉(Ⅱ)的配合物。通过元素分析确定了配合物的组成。通达摩尔电导、比移值,紫外光谱、红外光谱和核磁共振谱的测定和分析,推断了配合物的结构。  相似文献   

2.
本文报道了2个新的Cu(Ⅱ)-Co(Ⅱ)双核配合物的制备。经元素分析和红外、电子光谱以及变温磁化率的测定,研究了配合物的某些性质。  相似文献   

3.
本文合成了一组新的不对称双核配合物「Cu(samen)Cu(terp)」和「Cu(samen)Zn(terp)」,samen~4和terp分别表示N N’-乙二水杨酰胺胺根阴离子和2.2′:6′2″-联三吡啶。配合物「Cu(samen)Cu(terp)」的变温磁化率已测,其数值用最小二乘法与Bleancy-Bowers方程拟合,求得交换积分J=-0.538cm~(-1),表明配合物中铜离子间有极弱的反铁磁自旋交换作用。  相似文献   

4.
基于铁和锰的双核配合物在生物氧化还原过程中的重要作用及在化学的氧化还原过程中可能做为催化剂的应用前景,本文合成了两个新的以氯醌酸二价阴离子为桥联配体的Fe(Ⅲ)双核和Mn(Ⅱ)双核配合物:[Fe_2(phen)_4(μ-CA)](ClO_4)_4·2H_2O(1)和[Mn_2(phen)_4(μ-CA)](ClO_4)_2·3H_2O(2)(phen=1,10菲咯啉;CA=氯醌酸二价阴离子)。经元素分析、IR、电子光谱及磁性等测定,对两配合物进行了表征。  相似文献   

5.
合成了3种新型配合物[Cu(samen)Mn(NO_(2-)Phen)_2](1)、[Cu(sampn)Mn(NO_(2-)Phen)_2](2)和[Cu(samen)CO(terp)](3)(samen~(4-)、sampn~(4-)、NO_(2-)Phen和terp分别表示N,N′-乙二水杨酰胺根阴离子、N,N′-1,2-丙二水杨酰胺根阴离子、5-硝基-1,10-菲绕啉和联三吡啶),测得配合物的变温磁化率,求出交换积分,J分别为-63cm~(-1)(1)、—65cm~(-1)(2)和—7.68cm~(-1)(3),表明金属离子间有反铁磁超交换作用。  相似文献   

6.
报道了Gd(Ⅲ)-Cu(Ⅱ)杂核大环配合物的合成. 元素分析、红外光谱、电喷雾质谱等数据证明杂核配合物的存在. 变温磁性研究结果表明分子内Gd(Ⅲ)和Cu(Ⅱ)成铁磁性偶合.  相似文献   

7.
以N,N′-乙二水杨酰胺合镍酸钠同二价金属离子和2,2-联吡啶(bpy)或1,10菲绕啉(phen)反应制得双核配合物,[Ni(samen)Cu(L)]和[Ni(samen)Ni(L)_2](L=bpy,phen).经元素分析。红外、电子光谱等方法已推定[Ni(samen)]~2-中的Ni(Ⅱ)的配位环境为平面四方型,而被bpy或phen配位的Cu(Ⅱ)和Ni(Ⅱ),分别为平面四方型和畸变八面体构型。 据此,本文指派了配合物的电子光谱,评价了Dq,B,β等配位场参数,并且用配位场理论模型算出了有效磁矩,Ni(Ⅱ)-Cu(Ⅱ)配合物的g_(11),与g_1,结果理论值与实验值相当吻合。  相似文献   

8.
本文对某些酸性磷(膦)酸酯与Co(Ⅱ)、Ni(Ⅱ)、VO(Ⅱ)配合物的电子光谱进行了测定,讨论了这类配合物的构型和光谱参数对萃取性能的影响。实验测得并计算了VO(Ⅱ)配合物的ESR波谱参数和键参数,对这类配合物的成键特性进行了讨论。  相似文献   

9.
以MCl2和配体L(L=1,10 菲咯啉 5,6 二酮)为原料,合成了标题配合物MLCl2,M=Mn(Ⅱ)、Fe(Ⅱ)、Co(Ⅱ),并经元素分析、电子吸收光谱、红外光谱表征.三者均为四配位的电中性配合物,热稳定性高于500K,易溶于DMF、DMSO和吡啶,可溶于二氯乙烷、乙醇和水.它们在DMSO、DMF中于350nm和310nm附近显示出强的M→L荷移跃迁.  相似文献   

10.
Cu(Ⅱ)Fe(Ⅲ)Cu(Ⅱ)异三核配合物的合成及表征   总被引:1,自引:0,他引:1  
景志红 《化学研究》2000,11(3):41-42,48
合成了三种以草酸根为桥联配体的异三核配合物。经元素分析、红外光谱、电子光谱、摩尔电导及室温磁矩对配合物的组成和结构进行了表征。研究表明 ,在Cu(Ⅱ ) Fe(Ⅲ ) Cu(Ⅱ )离子间存在着反铁磁相互作用。  相似文献   

11.
A novel tetradentate salicylic acid-formaldehyde ligand containing piperazine moiety (SFP) was synthesized by condensation of salicylic acid, formaldehyde and piperazine in presence of base catalyst, which was subjected for the preparation of coordination polymers with metal ions like manganese(II), cobalt(II), copper(II), nickel(II) and zinc(II). All the synthesized polymeric compounds were characterized by elemental analysis, IR, (1)H NMR and electronic spectral studies. The thermal stability was determined by thermogravimetric analysis and thermal data revealed that all the polymer metal complexes show good thermal stability than their parent ligand. Electronic spectral data and magnetic moment values revealed that polymer metal complexes of Mn(II), Co(II) and Ni(II) show an octahedral geometry while Cu(II) and Zn(II) show distorted octahedral and tetrahedral geometry respectively. The antimicrobial screening of the ligand and coordination polymers was done by using Agar well diffusion method against various bacteria and fungi. It was evident from the data that antibacterial and antifungal activity increased on chelation and all the polymer metal complexes show excellent antimicrobial activity than their parent ligand.  相似文献   

12.
Two kinds of nickel(II) and copper(II) beta-diketone complexes derived from thenoyltrifluoroacetone ligand with blue-violet light absorption were synthesized by reacting free ligand and different metal(II) ions in sodium methoxide solution. Their structures were postulated based on elemental analysis, ESI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. Their solubility in organic solvents, absorption properties of thin film and thermal stability of these complexes were evaluated.  相似文献   

13.
采用模板反应合成了Schiff碱型大环L的15种稀土金属离子的配合物。对配合物的组成进行了推测和紫外光谱、红外光谱、摩尔电导以及差热-热重等项分析。  相似文献   

14.
A series of metal complexes of Cu(II), Ni(II), Co(II), Fe(III) and Mn(II) have been synthesized with newly synthesized biologically active tridentate ligand. The ligand was synthesized by condensation of dehydroacetic acid (3-acetyl-6-methyl-(2H) pyran-2,4(3H)-dione or DHA), o-phenylene diamine and fluoro benzaldehyde and characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV–Vis spectroscopy and mass spectra. From the analytical data, the stoichiometry of the complexes was found to be 1:2 (metal:ligand) with octahedral geometry. The molar conductance values suggest the non-electrolyte nature of metal complexes. The IR spectral data suggest that the ligand behaves as a dibasic tridentate ligand with ONN donor atoms sequence towards central metal ion. Thermal behaviour (TG/DTA) and kinetic parameters calculated by the Coats–Redfern and Horowitz–Metzger method suggest more ordered activated state in complex formation. To investigate the relationship between stability constants of metal complexes and antimicrobial activity, the dissociation constants of Schiff bases and stability constants of their binary metal complexes have been determined potentiometrically in THF–water (60:40%) solution at 25 ± 1 °C and at 0.1 M NaClO4 ionic strength. The potentiometric study suggests 1:1 and 1:2 complexation. Antibacterial and antifungal activities in vitro were performed against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma, respectively. The stability constants of the metal complexes were calculated by the Irving–Rosotti method. A relation between the stability constant and antimicrobial activity of complexes has been discussed. It is observed that the activity enhances upon complexation and the order of antifungal activity is in accordance with stability order of metal ions.  相似文献   

15.
A bioactive Schiff base HL i.e. 2‐hydroxy‐benzoic acid(3,4‐dihydro‐2H ‐naphthalen‐1‐ylidene)‐hydrazide was synthesized by reacting equimolar amount of salicylic acid hydrazide and 1‐tetralone. Co(II), Ni(II) and Zn(II) complexes of ligand HL was synthesized in 1:1 and 1:2 molar ratio of metal to ligand. The structure of the synthesized ligand and metal complexes was established by elemental analysis, molar conductance, magnetic susceptibility measurements, electronic, IR and EPR spectral techniques. For determining the thermal stability the TGA has been done. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6–31 + g(d,p) basis set. Spectral data reveal that ligand behave uninegative tridentate in ML complexes and uninegative bidentate in ML2 complexes. On the basis of characterization octahedral geometry has been assigned for Co(II) and Ni(II) complexes, while tetrahedral for Zn(II) complexes. Antibacterial activity of the synthesized compounds were evaluated against Staphylococcus aureus , Bacillus subtilis, Escherichia coli , Xanthomonas campestris and Pseudomonas aeruginosa and the results revealed that metal complexes show enhanced activity in comparison to free ligand.  相似文献   

16.
Polymeric metal complexes were prepared using a synthesized novel terpolymer ligand involving anthranilic acid–o‐toluidine–formaldehyde by a polycondensation technique. The synthesized ligand and its metal complexes were characterized using elemental analysis and molar conductivity measurements, and FT‐IR, electronic, electron spin resonance and NMR (1H and 13C) spectral methods. The surface morphology and the nature of the synthesized compounds were examined using scanning electron microscopy and X‐ray diffraction. The thermal stabilities of the ligand and its metal complexes were determined using thermogravimetric analysis (TGA). From the TGA results, various kinetic parameters, i.e. activation energy and order of reaction, and thermodynamic parameters, i.e. entropy change, apparent entropy, frequency factor and free energy change, were determined using the Freeman–Carroll and Sharp–Wentworth methods. In addition, a thermal degradation model was also proposed using the Phadnis–Deshpande method. The thermal stability of the ligand and its metal complexes was found to be appreciably high; in particular, the ligand showed very high stability compared to its metal complexes due to intramolecular hydrogen bonding. Furthermore, the synthesized compounds were subjected to in vitro antibacterial studies with various microorganisms. The results of the studies confirmed that the compounds showed better antibacterial results than a standard antibacterial drug. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Co(II), Ni(II), Cu(II) and Zn(II) Schiff base complexes derived from 3-hydrazinoquionoxaline-2-one and 1,2-diphenylethane-1,2-dione were synthesized. The compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV–vis, 1H NMR, 13C NMR, ESR, and mass spectral studies. Thermal studies of the ligand and its metal complexes were also carried out to determine their thermal stability. Octahedral geometry has been assigned for Co(II), Ni(II), and Zn(II) complexes, while Cu(II) complex has distorted octahedral geometry. Powder XRD study was carried out to determine the grain size of ligand and its metal complexes. The electrochemical behavior of the synthesized compounds was investigated by cyclic voltammetry. For all complexes, a 2 : 1 ligand-to-metal ratio is observed. The ligand and its metal complexes were screened for their activity against bacterial species such as E. coli, P. aeruginosa, and S. aureus and fungal species such as A. niger, C. albicans, and A. flavus by disk diffusion method. The DNA-binding of the ligand and its metal complexes were investigated by electronic absorption titration and viscosity measurement studies. Agarose gel electrophoresis was employed to determine the DNA-cleavage activity of the synthesized compounds. Density functional theory was used to optimize the structure of the ligand and its Zn(II) complex.  相似文献   

18.
A bidentate/tridentate 5-bromosalycilaldehyde isonicotinoylhydrazone Schiff base was synthesized by condensing 5-bromosalycilaldehyde with isonicotinoylhydrazine. Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) complexes of this chelating ligand were synthesized using nitrates of these metals. The ligand and the complexes were characterized by elemental analysis, UV–Vis, IR and EPR spectroscopy, conductance and magnetic susceptibility measurements, fluorescence, cyclic voltammetry and thermogravimetric analysis. The ligand and Zn(II) complex exhibits solid-state photoluminescence at room temperature.  相似文献   

19.
Two novel pyrazole-derived ligands, 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid (CDPA) and 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N-phenylpicolinamide (CDPP) were prepared by 3,6-dichloropicolinic acid (DCPA). Their complexes with terbium(III) and europium(III) were synthesized. The complexes were characterized by elemental analysis, infrared spectra, 1H NMR and TG–DTG. Furthermore, the above complexes using 1,10-phenanthroline as a secondary ligand were also synthesized and characterized. The luminescence properties of these complexes in solid state were investigated. The results suggested that Tb(III) complexes exhibit more efficient luminescence than Eu(III) complexes and the fluorescence of the complexes with 1,10-phenanthroline as a secondary ligand was prominently stronger than that of complexes without this ligand., and the three ligand (DCPA), (CDPP) and (CDPA) are excellent sensitizers to Eu(III) and Tb(III) ion.  相似文献   

20.
(103)Rhodium(III) complexes derived from seven acyclic tetradentate N(2)S(2) ligands (one diaminedithiol and six diaminedithioether ligands) have been synthesized and characterized. Structural variations in the ligand include the length of carbon backbone between the coordinating atoms (222; 232; 323; 333), the presence or absence of gem-dimethyl groups α to sulfur, and the nature of the organic moiety on the sulfurs (hydrogen, p-methoxybenzyl and methyl). For each ligand, the formation of cis and/or trans dichloro isomeric complexes was assessed. Two complexes have been further characterized by single crystal X-ray diffraction. Preparation of the (103)Rhodium(III) complexes was conducted and overall radiochemical yields, in vitro stability and log D(7.4) values were measured. From these studies, the ligand with the 232 chain length, gem-dimethyl groups and the methyl thioether (L4) emerged as a preferred ligand for formation of rhodium complexes with trans geometry and highest radiochemical yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号