首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analogues of 1‐O‐hexadecyl‐sn‐3‐glycerophosphonocholine (compounds 1 – 4 ) or sn‐3‐glycerophosphocholine (compound 5 ) bearing a carbamate or dicarbamate moiety at the sn‐2 position were synthesized and evaluated for their antiproliferative activity against cancer cells derived from a variety of tissues. Although all of the compounds are antiproliferative, surprisingly the carbamates ( 1 and 2 ) are more effective against the hormone‐independent cell lines DU145 and PC3 than toward other cancer cell lines we examined. This selectivity was not observed with the dicarbamates ( 3 and 4 ). Phosphocholine carbamate analogue 5 is as effective against the prostate cancer cell lines as the corresponding phosphonocholine analogue 1 . Cell death induced by 2′‐(trimethylammonio)ethyl 4‐hexadecyloxy‐3(R)‐N‐methylcarbamoyl‐1‐butanephosphonate (carbamate analogue 2 ) appeared to be mediated by apoptosis, as assessed by caspase activation and loss of mitochondrial membrane potential. The in vivo activity of 2 was evaluated in a murine prostate cancer xenograft model. Oral and intravenous administration showed that 2 is effective in inhibiting the growth of PC3 tumors in Rag2M mice. Our studies show that the glycerolipid carbamates reported herein represent a class of prostate‐cancer‐selective cytotoxic agents.  相似文献   

2.
Pharmacological treatment of Chagas disease is based on benznidazole, which displays poor efficacy when administered during the chronic phase of infection. Therefore, the development of new therapeutic options is needed. This study reports on the structural design and synthesis of a new class of anti‐Trypanosoma cruzi thiazolidinones ( 4 a – p ). (2‐[2‐Phenoxy‐1‐(4‐bromophenyl)ethylidene)hydrazono]‐5‐ethylthiazolidin‐4‐one ( 4 h ) and (2‐[2‐phenoxy‐1‐(4‐phenylphenyl)ethylidene)hydrazono]‐5‐ethylthiazolidin‐4‐one ( 4 l ) were the most potent compounds, resulting in reduced epimastigote proliferation and were toxic for trypomastigotes at concentrations below 10 μM , while they did not display host cell toxicity up to 200 μM . Thiazolidinone 4 h was able to reduce the in vitro parasite burden and the blood parasitemia in mice with similar potency to benznidazole. More importantly, T. cruzi infection reduction was achieved without exhibiting mouse toxicity. Regarding the molecular mechanism of action, these thiazolidinones did not inhibit cruzain activity, which is the major trypanosomal protease. However, investigating the cellular mechanism of action, thiazolidinones altered Golgi complex and endoplasmic reticulum (ER) morphology, produced atypical cytosolic vacuoles, as well as induced necrotic parasite death. This structural design employed for the new anti‐T. cruzi thiazolidinones ( 4 a – p ) led to the identification of compounds with enhanced potency and selectivity compared to first‐generation thiazolidinones. These compounds did not inhibit cruzain activity, but exhibited strong antiparasitic activity by acting as parasiticidal agents and inducing a necrotic parasite cell death.  相似文献   

3.
Novel angular and branched ellipticine‐correlated anticancer agents were developed. In particular, compound 24 , with two basic side chains on opposite sides of the molecule, exhibits cytotoxicity in the nanomolar range, acting as a DNA intercalator and topoisomerase II inhibitor. SAR studies with pyridocarbazole derivatives in comparison with corresponding smaller pyrroloquinolines are discussed.

  相似文献   


4.
The breast cancer resistance protein (BCRP/ABCG2) is a member of the ABC transporter superfamily. This protein has a number of physiological functions, including protection of the human body from xenobiotics. The overexpression of BCRP in certain tumor cell lines causes cross‐resistance against various drugs used in chemotherapeutic treatment. In a previous work we showed that a new class of compounds derived from XR9576 (tariquidar) selectively inhibits BCRP. In this work we synthesized more members of this class, with modification on the second and third aromatic rings. The inhibitory activities against BCRP and P‐gp were assayed using a Hoechst 33342 assay for BCRP and a calcein AM assay for P‐gp. Finally, quantitative structure–activity relationships for both aromatic rings were established. The results obtained show the importance of the electron density on the third aromatic ring, influenced by substituents, pointing to interactions with aromatic residues of the protein binding site. In the second aromatic ring the activity of compounds is influenced by the steric volume of the substituents.  相似文献   

5.
The cinnamamide scaffold has been incorporated in to the structure of numerous organic compounds with therapeutic potential. The scaffold enables multiple interactions, such as hydrophobic, dipolar, and hydrogen bonding, with important molecular targets. Additionally, the scaffold has multiple substitution options providing the opportunity to optimize and modify the pharmacological activity of the derivatives. In particular, cinnamamide derivatives have exhibited therapeutic potential in animal models of both central and peripheral nervous system disorders. Some have undergone clinical trials and were introduced on to the pharmaceutical market. The diverse activities observed in the nervous system included anticonvulsant, antidepressant, neuroprotective, analgesic, anti‐inflammatory, muscle relaxant, and sedative properties. Over the last decade, research has focused on the molecular mechanisms of action of these derivatives, and the data reported in the literature include targeting the γ‐aminobutyric acid type A (GABAA) receptors, N‐methyl‐D ‐aspartate (NMDA) receptors, transient receptor potential (TRP) cation channels, voltage‐gated potassium channels, histone deacetylases (HDACs), prostanoid receptors, opioid receptors, and histamine H3 receptors. Here, the literature data from reports evaluating cinnamic acid amide derivatives for activity in target‐based or phenotypic assays, both in vivo and in vitro, relevant to disorders of the central and peripheral nervous systems are analyzed and structure–activity relationships discussed.  相似文献   

6.
Triptolide is a diterpene triepoxide natural product isolated from Tripterygium wilfordii Hook F, a traditional Chinese medicinal herb. Triptolide has previously been shown to possess antitumor, anti‐inflammatory, immunosuppressive, and antifertility activities. Earlier reports suggested that the five‐membered unsaturated lactone ring (D ring) is essential for potent cytotoxicity, however, to the best of our knowledge, systematic structure–activity relationship studies have not yet been reported. Here, four types of D ring‐modified triptolide analogues were designed, synthesized and evaluated against human ovarian (SKOV‐3) and prostate (PC‐3) carcinoma cell lines. The results suggest that the D ring is essential to potency, however it can be modified, for example to C18 hydrogen bond acceptor and/or donor furan ring analogues, without complete loss of cytotoxic activity. Interestingly, evaluation of the key series of C19 analogues showed that this site is exquisitely sensitive to polarity. Together, these results will guide further optimization of this natural product lead compound for the development of potent and potentially clinically useful triptolide analogues.  相似文献   

7.
8.
Shedding light on the lamellarins : Structural determinants for potent cytotoxic activity toward various cancer cell lines were systematically investigated to establish SARs for the marine alkaloids in the lamellarin family. The C5?C6 double bond ensures not only the planarity of the D‐ring, but also proper alignment of the substituents on the E‐ring with their respective moieties of the target. The importance of the C7 OH group is also revealed for the first time.

  相似文献   


9.
Combretastatin A‐4 derivatives : A series of combretastatin A‐4‐derived 1‐benzyl‐4,5,6‐trimethoxyindoles was designed and prepared as a novel class of potent antimitotic agents acting through the colchicine binding site on the microtubule.

  相似文献   


10.
Lead optimization of a high‐throughput screening hit led to the rapid identification of aminopyrimidine ZK 304709, a multitargeted CDK and VEGF‐R inhibitor that displayed a promising preclinical profile. Nevertheless, ZK 304709 failed in phase I studies due to dose‐limited absorption and high inter‐patient variability, which was attributed to limited aqueous solubility and off‐target activity against carbonic anhydrases. Further lead optimization efforts to address the off‐target activity profile finally resulted in the introduction of a sulfoximine group, which is still a rather unusual approach in medicinal chemistry. However, the sulfoximine series of compounds quickly revealed very interesting properties, culminating in the identification of the nanomolar pan‐CDK inhibitor BAY 1000394, which is currently being investigated in phase I clinical trials.  相似文献   

11.
12.
13.
Drug‐resistant Pseudomonas aeruginosa (PA) strains are on the rise, making treatment with current antibiotics ineffective. Hence, circumventing resistance or restoring the activity of antibiotics by novel approaches is of high demand. Targeting the Pseudomonas quinolone signal quorum sensing (PQS‐QS) system is an intriguing strategy to abolish PA pathogenicity without affecting the viability of the pathogen. Herein we report the structure–activity relationships of 2‐sulfonylpyrimidines, which were previously identified as dual‐target inhibitors of the PQS receptor PqsR and the PQS synthase PqsD. The SAR elucidation was guided by a combined approach using ligand efficiency and ligand lipophilicity efficiency to select the most promising compounds. In addition, the most effective inhibitors were rationally modified by the guidance of QSAR using Hansch analyses. Finally, these inhibitors showed the capacity to decrease biofilm mass and extracellular DNA, which are important determinants for antibiotic resistance.  相似文献   

14.
We sought to establish if methylene homologues of artemisone are biologically more active and more stable than artemisone. The analogy is drawn with the conversion of natural O‐ and N‐glycosides into more stable C‐glycosides that may possess enhanced biological activities and stabilities. Dihydroartemisinin was converted into 10β‐cyano‐10‐deoxyartemisinin that was hydrolyzed to the α‐primary amide. Reduction of the β‐cyanide and the α‐amide provided the respective methylamine epimers that upon treatment with divinyl sulfone gave the β‐ and α‐methylene homologues, respectively, of artemisone. Surprisingly, the compounds were less active in vitro than artemisone against P. falciparum and displayed no appreciable activity against A549, HCT116, and MCF7 tumor cell lines. This loss in activity may be rationalized in terms of one model for the mechanism of action of artemisinins, namely the cofactor model, wherein the presence of a leaving group at C10 assists in driving hydride transfer from reduced flavin cofactors to the peroxide during perturbation of intracellular redox homeostasis by artemisinins. It is noted that the carba analogue of artemether is less active in vitro than the O‐glycoside parent toward P. falciparum, although extrapolation of such activity differences to other artemisinins at this stage is not possible. However, literature data coupled with the leaving group rationale suggest that artemisinins bearing an amino group attached directly to C10 are optimal compounds.  相似文献   

15.
16.
The inside cover picture shows the structure of lamellarin N as a representative of cytotoxic marine lamellarin alkaloids, together with a potential molecular target, the topoisomerase I–DNA complex. Systematic SAR studies revealed the importance of the substituents for potent cytotoxicity. For more details, see the Full Paper by P. Ploypradith et al. on p. 457 ff.

  相似文献   


17.
Iodoglucoazomycin (I‐GAZ; N‐(2‐iodo‐3‐(6‐O‐glucosyl)propyl)‐2‐nitroimidazole), a non‐glycosidic nitroimidazole–6‐O‐glucose adduct, was synthesized, radioiodinated, and evaluated as a substrate of glucose transporter 1 (GLUT1) for radiotheranostic (therapy+diagnostic) management of hypoxic tumors. Nucleophilic iodination of the nosylate synthon of I‐GAZ followed by deprotection afforded I‐GAZ in 74 % overall yield. I‐GAZ was radioiodinated via ‘exchange’ labeling using [123/131I]iodide (50–70 % RCY) and then purified by Sep‐Pak? (>96 % RCP). [131I]I‐GAZ was stable in 2 % ethanolic solution in sterile water for 14 days when stored at 5 °C. In cell culture, I‐GAZ was found to be nontoxic to EMT‐6 cells at concentrations <0.5 mm , and weakly radiosensitizing (SER 1.1 at 10 % survival of EMT‐6 cells; 1.2 at 0.1 % survival in MCF‐7 cells). The hypoxic/normoxic uptake ratio of [123I]I‐GAZ in EMT‐6 cells was 1.46 at 2 h, and under normoxic conditions the uptake of [123I]I‐GAZ by EMT‐6 cells was unaltered in the presence of 5 mm glucose. The biodistribution of [131I]I‐GAZ in EMT‐6 tumor‐bearing Balb/c mice demonstrated rapid clearance from blood and extensive renal and hepatic excretion. Tumor/blood and tumor/muscle ratios reached ~3 and 8, respectively, at 4 h post‐injection. Regression analysis of the first order polynomial plots of the blood and tumor radioactivity concentrations supported a perfusion–excretion model with low hypoxia‐dependent binding. [131I]I‐GAZ was found to be stable in vivo, and did not deiodinate.  相似文献   

18.
The exploration of structure–activity relationships (SARs) in chemical lead optimization is mostly focused on activity against single targets. Because many active compounds have the potential to act against multiple targets, achieving a sufficient degree of target selectivity often becomes a major issue during optimization. Herein we report a data analysis approach to explore compound selectivity in a systematic and quantitative manner. Sets of compounds that are active against multiple targets provide a basis for exploring structure–selectivity relationships (SSRs). Compound similarity and selectivity data are analyzed with the aid of network‐like similarity graphs (NSGs), which organize molecular networks on the basis of similarity relationships and SAR index (SARI) values. For this purpose, the SARI framework has been adapted to quantify SSRs. Using sets of compounds with differential activity against four cathepsin thiol proteases, we show that SSRs can be quantitatively described and categorized. Furthermore, local SSR environments are identified, the analysis of which provides insight into compound selectivity determinants at the molecular level. These environments often contain “selectivity cliffs” formed by pairs or groups of similar compounds with significantly different selectivity. Moreover, key compounds are identified that determine characteristic features of single‐target SARs and dual‐target SSRs. The comparison of compounds involved in the formation of selectivity cliffs often reveals chemical modifications that render compounds target selective.  相似文献   

19.
The chemically stabilized somatostatin‐derived cyclic octapeptide octreotate has a number of interesting applications in medicinal chemistry. Here, a number of different organometallic derivatives of octreotate were prepared, and their properties were investigated. Specifically, we report the synthesis and characterization of ruthenocene, ferrocene, and cobaltocenium octreotate derivatives and their fluorophore‐labeled conjugates as well as a dicobalt hexacarbonyl alkyne functionalized octreotate. To provide further insights into their characteristics, the log P values and electrochemical properties of the novel metal conjugates were compared. For biological activity, we determined their toxicity in three different cell lines. Cellular uptake and colocalization of selected compounds were studied by fluorescence microscopy with particular focus on efficiency and specificity of their uptake through the somatostatin receptor SSTR to elucidate the value of the metallocene head group for its potential use as a nontoxic and universal peptide label.  相似文献   

20.
Dengue is a systemic viral infection that is transmitted to humans by Aedes mosquitoes. No vaccines or specific therapeutics are currently available for dengue. Lycorine, which is a natural plant alkaloid, has been shown to possess antiviral activities against flaviviruses. In this study, a series of novel lycorine derivatives were synthesized and assayed for their inhibition of dengue virus (DENV) in cell cultures. Among the lycorine analogues, 1‐acetyllycorine exhibited the most potent anti‐DENV activity (EC50=0.4 μM ) with a reduced cytotoxicity (CC50>300 μM ), which resulted in a selectivity index (CC50/EC50) of more than 750. The ketones 1‐acetyl‐2‐oxolycorine (EC50=1.8 μM ) and 2‐oxolycorine (EC50=0.5 μM ) also exhibited excellent antiviral activities with low cytotoxicity. Structure–activity relationships for the lycorine derivatives against DENV are discussed. A three‐dimensional quantitative structure–activity relationship model was established by using a comparative molecular‐field analysis protocol in order to rationalize the experimental results. Further modifications of the hydroxy group at the C1 position with retention of a ketone at the C2 position could potentially lead to inhibitors with improved overall properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号