首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of sugar‐modified derivatives of cytostatic 7‐heteroaryl‐7‐deazaadenosines (2′‐deoxy‐2′‐fluororibo‐ and 2′‐deoxy‐2′,2′‐difluororibonucleosides) bearing an aryl or heteroaryl group at position 7 was prepared and screened for biological activity. The difluororibonucleosides were prepared by non‐ stereoselective glycosidation of 6‐chloro‐7‐deazapurine with benzoyl‐protected 2‐deoxy‐2,2‐difluoro‐D ‐erythro‐pentofuranosyl‐1‐mesylate, followed by amination and aqueous Suzuki cross‐couplings with (het)arylboronic acids. The fluororibo derivatives were prepared by aqueous palladium‐catalyzed cross‐coupling reactions of the corresponding 7‐iodo‐7‐deazaadenine 2′‐deoxy‐2′‐fluororibonucleoside 20 with (het)arylboronic acids. The key intermediate 20 was prepared by a six‐step sequence from the corresponding arabinonucleoside by selective protection of 3′‐ and 5′‐hydroxy groups with acid‐labile groups, followed by stereoselective SN2 fluorination and deprotection. Some of the title nucleosides and 7‐iodo‐7‐deazaadenine intermediates showed micromolar cytostatic or anti‐HCV activity. The most active were 7‐iodo and 7‐ethynyl derivatives. The corresponding 2′‐deoxy‐2′,2′‐difluororibonucleoside 5′‐O‐triphosphates were found to be good substrates for bacterial DNA polymerases, but are inhibitors of human polymerase α.  相似文献   

2.
X‐ray crystallographic study of 2,2′,2″,2′′′,4,4′,4″,4′′′,6,6′,6″,6′′′‐dodecanitro‐1,1′ : 3′1″ : 3″,1′′′‐quaterphenyl (DODECA) has been carried out. Nonbonding interatomic distances of oxygen atoms inside of all the nitro groups are shorter than those corresponding to the intermolecular contact radii for oxygen. By means of the DFT B3LYP/6‐31(d, p) method a difference of 136 kJ mol−1 between the X‐ray and DFT structures of DODECA was found. The bearer of the highest initiation reactivity in its molecule in solid phase should be the nitro group at 4′′′‐position, in contrast to those at 2′‐ or 2″‐positions in its isolated molecule. The most reactive nitro group in the DODECA molecule can be well specified by the relationship between net charges on nitro groups and charges on their nitrogen atoms, both of them for the X‐ray structure. The 15N chemical shift, corresponding to this nitro group for the initiation by impact and shock, correlates very well with these shifts of the reaction centers of the other six “genuine” polynitro arenes.  相似文献   

3.
A variety of substituted 2,2′‐bipyridines were synthesized by a 1,2‐bis(diphenylphosphino)ethane (dppe)/cobalt chloride hexahydrate (CoCl2⋅6 H2O)/zinc‐catalyzed [2+2+2] cycloaddition reaction of diynes and nitriles, with all reactions exhibiting exclusive regioselectivity. Thus, symmetrical and unsymmetrical 1,6‐diynes and 2‐cyanopyridine reacted in the presence of 5 mol % of dppe, 5 mol % of CoCl2⋅6 H2O and 10 mol % of zinc powder to provide the corresponding 2,2′‐bipyridines. Under identical reaction conditions, 1‐(2‐pyridyl)‐1,6‐diynes and nitriles reacted smoothly with exclusive regioselectivity to produce 2,2′‐bipyridines in good yield. 2,2′‐Bipyridines were also obtained by the double [2+2+2] cycloaddition reaction of 1,6,8,13‐tetraynes with nitriles. Similarly, 2,2′:6′,2′′‐terpyridines were synthesized from 1‐(2‐pyridyl)‐1,6‐diyne and 2‐cyanopyridine. The regiochemistry observed can be explained by considering the electronic nature of cobaltacyclopentadiene intermediates and nitriles. A survey of the exclusive regiochemical trend gives reasonable credence to the synthetic potential of the present method.  相似文献   

4.
Atom transfer radical polymerization (ATRP) of (R)‐2‐methacryloyloxy‐2′‐methoxy‐1,1′‐binaphthalene ((R)‐MAMBN) mediated by different amine ligands, copper(I) chloride and ethyl 2‐bromopropionate in different solvents, and reverse ATRP of (R)‐MAMBN were studied. It was shown that optically active polymers were obtained, with poor control of the molecular weights, and low polydispersities. Specific rotation of the polymers increased with increasing molecular weights. By comparison with (R)‐MAMBN, poly((R)‐MAMBN)s exhibits higher specific rotation and a positive Cotton effect. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
Gene expression is extensively regulated by the occurrence and distribution of the epigenetic marker 2′‐deoxy 5‐methylcytosine (5mC) in genomic DNA. Because of its effects on tumorigenesis there is an important link to human health. In addition, detection of 5mC can serve as an outstanding biomarker for diagnostics as well as for disease therapy. Our previous studies have already shown that, by processing O6‐alkylated 2′‐deoxyguanosine triphosphate (dGTP) analogues, DNA polymerases are able to sense the presence of a single 5mC unit in a template. Here we present the synthesis and evaluation of an extended toolbox of 6‐substituted 2‐aminopurine‐2′‐deoxyribonucleoside 5′‐triphosphates modified at position 6 with various functionalities. We found that sensing of 5‐methylation by this class of nucleotides is more general, not being restricted to O6‐alkyl modification of dGTP but also applying to other functionalities.  相似文献   

6.
Chiral N‐(binaphthyl‐2‐yl)thiophosphoramide L7 [O,O‐diethyl 2′‐(ethylamino)‐1,1′‐binaphthyl‐2‐ylamidothiophosphate] prepared from the reaction of diethyl chlorothiophosphate with (R)‐(+)‐N‐ethyl‐1,1′‐binaphthyl‐2,2′‐diamine was used as a catalytic chiral ligand in the first Cu(OTf)2‐promoted catalytic asymmetric addition of diethylzinc to N‐(diphenylphosphinoyl) imines in which ~85% ee can be realized.  相似文献   

7.
The synthesis and properties two series of new 2′‐O‐methyl RNA probes, each containing a single insertion of a 2′‐bispyrenylmethylphosphorodiamidate derivative of a nucleotide (U, C, A, and G), are described. As demonstrated by UV melting studies, the probes form stable complexes with model RNAs and DNAs. Significant increases (up to 21‐fold) in pyrene excimer fluorescence intensity were observed upon binding of most of the probes with complementary RNAs, but not with DNAs. The fluorescence spectra are independent of the nature of the modified nucleotides. The nucleotides on the 5′‐side of the modified nucleotide have no effect on the fluorescence spectra, whereas the natures of the two nucleotides on the 3′‐side are important: CC, CG, and UC dinucleotide units on the 3′‐side of the modified nucleotide provide the maximum increases in excimer fluorescence intensity. This study suggests that these 2′‐bispyrene‐labeled 2′‐O‐methyl RNA probes might be useful tools for detection of RNAs.  相似文献   

8.
Oligonucleotides containing various adducts, including ethyl, benzyl, 4‐hydroxybutyl and 7‐hydroxyheptyl groups, at the O4 atom of 5‐fluoro‐O4‐alkyl‐2′‐deoxyuridine were prepared by solid‐phase synthesis. UV thermal denaturation studies demonstrated that these modifications destabilised the duplex by approximately 10 °C, relative to the control containing 5‐fluoro‐2′‐deoxyuridine. Circular dichroism spectroscopy revealed that these modified duplexes all adopted a B‐form DNA structure. O6‐Alkylguanine DNA alkyltransferase (AGT) from humans (hAGT) was most efficient at repair of the 5‐fluoro‐O4‐benzyl‐2′‐deoxyuridine adduct, whereas the thymidine analogue was refractory to repair. The Escherichia coli AGT variant (OGT) was also efficient at removing O4‐ethyl and benzyl adducts of 5‐fluoro‐2‐deoxyuridine. Computational assessment of N1‐methyl analogues of the O4‐alkylated nucleobases revealed that the C5‐fluorine modification had an influence on reducing the electron density of the O4?Cα bond, relative to thymine (C5‐methyl) and uracil (C5‐hydrogen). These results reveal the positive influence of the C5‐fluorine atom on the repair of larger O4‐alkyl adducts to expand knowledge of the range of substrates able to be repaired by AGT.  相似文献   

9.
A novel enzymatic production system of optically pure β‐hydroxy α‐amino acids was developed. Two enzymes were used for the system: an N‐succinyl L ‐amino acid β‐hydroxylase (SadA) belonging to the iron(II)/α‐ketoglutarate‐dependent dioxygenase superfamily and an N‐succinyl L ‐amino acid desuccinylase (LasA). The genes encoding the two enzymes are part of a gene set responsible for the biosynthesis of peptidyl compounds found in the Burkholderia ambifaria AMMD genome. SadA stereoselectively hydroxylated several N‐succinyl aliphatic L ‐amino acids and produced N‐succinyl β‐hydroxy L ‐amino acids, such as N‐succinyl‐L ‐β‐hydroxyvaline, N‐succinyl‐L ‐threonine, (2S,3R)‐N‐succinyl‐L ‐β‐hydroxyisoleucine, and N‐succinyl‐L ‐threo‐β‐hydroxyleucine. LasA catalyzed the desuccinylation of various N‐succinyl‐L ‐amino acids. Surprisingly, LasA is the first amide bond‐forming enzyme belonging to the amidohydrolase superfamily, and has succinylation activity towards the amino group of L ‐leucine. By combining SadA and LasA in a preparative scale production using N‐succinyl‐L ‐leucine as substrate, 2.3 mmol of L ‐threo‐β‐hydroxyleucine were successfully produced with 93% conversion and over 99% of diastereomeric excess. Consequently, the new production system described in this study has advantages in optical purity and reaction efficiency for application in the mass production of several β‐hydroxy α‐amino acids.

  相似文献   


10.
Multimeric uridine phosphorylase (UP) and purine nucleoside phosphorylase (PNP) of Bacillus subtilis have been expressed from genes cloned in Escherichia coli, purified, characterized, immobilized and stabilized on solid support. A new immobilization strategy has been developed for UP onto Sepabeads coated with polyethyleneamine followed by cross‐linking with aldehyde‐dextran. PNP has been immobilized onto glyoxyl‐agarose. At pH 10 and 45 °C these derivatives catalyzed the transglycosylation of 2′‐deoxyuridine to 2′‐deoxyguanosine in high yield (92%). Under the same conditions the not immobilized enzymes were promptly inactivated.  相似文献   

11.
The catalytic asymmetric [4+2] annulations of isatins with but‐3‐yn‐2‐one catalyzed by the Cinchona alkaloids‐derived oragnocatalyst (DHQD)2PHAL have been developed in the presence of 3.0 equivalents of D ‐diethyl tartrate in the mixed solvent (diphenyl ether/diethyl ether=1/1) or a slightly modified one, affording the corresponding substituted spiro[indoline‐3,2′‐pyran]‐2,4′(3′H)‐diones in good to excellent yields with high enantioselectivities under mild conditions.

  相似文献   


12.
Synthetic ways towards uridine 5′‐diphosphate (UDP)‐xylose are scarce and not well established, although this compound plays an important role in the glycobiology of various organisms and cell types. We show here how UDP‐glucose 6‐dehydrogenase (hUGDH) and UDP‐xylose synthase 1 (hUXS) from Homo sapiens can be used for the efficient production of pure UDP‐α‐xylose from UDP‐glucose. In a mimic of the natural biosynthetic route, UDP‐glucose is converted to UDP‐glucuronic acid by hUGDH, followed by subsequent formation of UDP‐xylose by hUXS. The nicotinamide adenine dinucleotide (NAD+) required in the hUGDH reaction is continuously regenerated in a three‐step chemo‐enzymatic cascade. In the first step, reduced NAD+ (NADH) is recycled by xylose reductase from Candida tenuis via reduction of 9,10‐phenanthrenequinone (PQ). Radical chemical re‐oxidation of this mediator in the second step reduces molecular oxygen to hydrogen peroxide (H2O2) that is cleaved by bovine liver catalase in the last step. A comprehensive analysis of the coupled chemo‐enzymatic reactions revealed pronounced inhibition of hUGDH by NADH and UDP‐xylose as well as an adequate oxygen supply for PQ re‐oxidation as major bottlenecks of effective performance of the overall multi‐step reaction system. Net oxidation of UDP‐glucose to UDP‐xylose by hydrogen peroxide (H2O2) could thus be achieved when using an in situ oxygen supply through periodic external feed of H2O2 during the reaction. Engineering of the interrelated reaction parameters finally enabled production of 19.5 mM (10.5 g L −1) UDP‐α‐xylose. After two‐step chromatographic purification the compound was obtained in high purity (>98%) and good overall yield (46%). The results provide a strong case for application of multi‐step redox cascades in the synthesis of nucleotide sugar products.

  相似文献   


13.
N,N′‐(Pyromellitoyl)‐bis‐(L ‐leucine) diacid was reacted with ethyl chloroformate in the presence of triethylamine followed by reaction with activated sodium azide and gave N,N′‐(pyromellitoyl)‐bis‐(L ‐leucine) diacylazide in high yield. This diacylazide was heated in dry benzene and gave the unstable N,N′‐(pyromellitoyl)‐bis‐(L ‐leucine) diisocyanate ( 5 ) in quantitative yield. Thus, diisocyanate 5 was generated in situ and polycondensation reaction of this monomer with several aromatic diols, such as 4,4′‐dihydroxybiphenyl, 1,4‐hydroquinone, bisphenol A, phenolphthalein and 1,4‐dihydroxyanthraquinone, was performed in dry toluene under refluxing in the presence of 1,4‐diazabicyclo[2.2.2]octane (triethylenediamine) as a catalyst. The polymerization reactions proceeded within 48 h, producing a series of optically active poly(imide–urethane)s with good yield and moderate inherent viscosity in the range 0.18–0.28 dl g?1. All of the above polymers were fully characterized by infrared spectra, elemental analyses and specific rotation. Some structural characterization and physical properties of these optically active poly(imide–urethane)s are reported Copyright © 2003 Society of Chemical Industry  相似文献   

14.
The (R)‐α‐lipoyl‐glycyl‐L ‐prolyl‐L ‐glutamyl dimethyl ester codrug (LA‐GPE, 1 ) was synthesized as a new multifunctional drug candidate with antioxidant and neuroprotective properties for the treatment of neurodegenerative diseases. Physicochemical properties, chemical and enzymatic stabilities were evaluated, along with the capacity of LA‐GPE to penetrate the blood–brain barrier (BBB) according to an in vitro parallel artificial membrane permeability assay for the BBB. We also investigated the potential effectiveness of LA‐GPE against the cytotoxicity induced by 6‐hydroxydopamine (6‐OHDA) and H2O2 on the human neuroblastoma cell line SH‐SY5Y by using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) reduction assay. Our results show that codrug 1 is stable at both pH 1.3 and 7.4, exhibits good lipophilicity (log P=1.51) and a pH‐dependent permeability profile. Furthermore, LA‐GPE was demonstrated to be significantly neuroprotective and to act as an antioxidant against H2O2‐ and 6‐OHDA‐induced neurotoxicity in SH‐SY5Y cells.  相似文献   

15.
Various approaches to the preparation of enantiomerically pure (2R,2′R)‐(+)‐threo‐methylphenidate hydrochloride ( 1 ) are reviewed. These approaches include synthesis using enantiomerically pure precursors obtained by resolution, classical and enzyme‐based resolution approaches, enantioselective synthesis approaches, and approaches based on enantioselective synthesis of (2S,2′R)‐erythro‐methylphenidate followed by epimerization at the 2‐position. 1 Introduction 2 Methods for the Enhancement of Enantiomeric Purity of 1 3 Approaches Using Enantiomerically Pure Precursors Obtained by Resolution 4 Classical Resolution Approaches 4.1 Resolution of Amide and Acid Derivatives 4.2 Resolution of (±)‐threo‐Methylphenidate 5 Enzyme‐Based Resolution Approaches 6 Enantioselective Synthesis Approaches 7 Approaches Based on Enantioselective Synthesis of (2S,2′R)‐erythro‐Methylphenidate and Epimerization 8 Conclusions  相似文献   

16.
A novel bismaleimide, 2,2′‐dimethyl‐4,4′‐bis(4‐maleimidophenoxy)biphenyl, containing noncoplanar 2,2′‐dimethylbiphenylene and flexible ether units in the polymer backbone was synthesized from 2,2′‐dimethyl‐4,4′‐bis(4‐aminophenoxy)biphenyl with maleic anhydride. The bismaleimide was reacted with 11 diamines using m‐cresol as a solvent and glacial acetic acid as a catalyst to produce novel polyaspartimides. Polymers were identified by elemental analysis and infrared spectroscopy, and characterized by solubility test, X‐ray diffraction, and thermal analysis (differential scanning calorimetry and thermogravimetric analysis). The inherent viscosities of the polymers varied from 0.22 to 0.48 dL g−1 in concentration of 1.0 g dL−1 of N,N‐dimethylformamide. All polymers are soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethylsulfoxide, pyridine, m‐cresol, and tetrahydrofuran. The polymers, except PASI‐4, had moderate glass transition temperature in the range of 188°–226°C and good thermo‐oxidative stability, losing 10% mass in the range of 375°–426°C in air and 357°–415°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 279–286, 1999  相似文献   

17.
Impurities containing methylene bridges between 2‐((2′‐ethylhexyl)oxy)‐5‐methoxy‐benzene molecules are inevitably formed during the synthesis of 1,4‐bis(chloromethyl)‐2‐((2′‐ethylhexyl)oxy)‐5‐methoxy‐benzene, the monomer used in the preparation of poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV), but they can be removed by double recrystallization of the monomer prior to polymerization. When impurities containing methylene bridges participate in a Gilch polymerization, the methylene bonds formed in the main chains are prone to break at 200 °C, that is, at least 150 °C below the major degradation temperature of defect‐free MEH‐PPV. Interestingly, the thermal treatment used to break the methylene bonds present reduces the chain aggregation of MEH‐PPV during film formation and induces its blends with poly(2,3‐diphenyl‐5‐octyl‐p‐phenylene‐vinylene) (DPO‐PPV) to form a morphology similar to that of block copolymers. Both significantly enhance the luminescence properties. Copyright © 2006 Society of Chemical Industry  相似文献   

18.
This paper reviews the synthesis, properties, performance, and safety of the insensitive explosive 3,3′‐diamino‐4,4′‐azoxyfurazan (DAAF, C4H4N8O3), CAS‐No. [78644‐89‐0], and 18 formulations based on it. Though having a moderate crystal density only, DAAF offers high positive heat of formation and hence superior performance when compared with TATB. It is friction and impact insensitive but is more sensitive to shock than TATB and has an exceptionally small critical diameter and performs very well at low temperatures unlike other insensitive explosives. 39 references to the public domain are given. For Part I see Ref. [1].  相似文献   

19.
The enzymatic epimerization of uridine 5′‐diphospho‐α‐D ‐glucose (UDP‐Glc, 1 ) and uridine 5′‐diphospho‐N‐acetyl‐α‐D ‐glucosamine (UDP‐GlcNAc, 2 ) and the subsequent oxidation of uridine 5′‐diphospho‐α‐D ‐galactose (UDP‐Gal, 3 ) and uridine 5′‐diphospho‐N‐acetyl‐α‐D ‐galactosamine (UDP‐GalNAc, 4 ) were combined with chemical biotinylation with biotin‐ε‐amidocaproylhydrazide in a one‐pot synthesis. Analysis by CE and NMR revealed a mixture (1.0:1.4) of the biotinylated nucleotide sugars uridine 5′‐diphospho‐6‐biotin‐ε‐amidocaproylhydrazino‐α‐D ‐galactose (UDP‐6‐biotinyl‐Gal, 7) and uridine 5′‐diphospho‐6‐biotin‐ε‐amidocaproylhydrazino‐α‐D ‐glucose (UDP‐6‐biotinyl‐Glc, 9 ), respectively, in a reaction started with 1 . One product, uridine 5′‐diphospho‐6‐biotin‐ε‐amidocaproylhydrazino‐N‐acetyl‐α‐D ‐galactosamine (UDP‐6‐biotinyl‐GalNAc, 8) was formed when the reaction was initiated with 2 . It could be demonstrated for the first time that a UDP‐Glc(NAc) 4′‐epimerase (Gne from Campylobacter jejuni) and galactose oxidase from Dactylium dendroides can be used simultaneously in enzymatic catalysis. This is of particular interest since the coaction of an enzyme demanding reductive conditions and an oxygen‐dependent oxidase is unexpected.  相似文献   

20.
4,4′‐Diamino‐3,3′‐dimethyldiphenylmethane was used to prepare polyimides in an attempt to achieve good organo‐solubility and light color. Polyimides based on this diamine and three conventional aromatic dianhydrides were prepared by solution polycondensation followed by chemical imidization. They possess good solubility in aprotonic polar organic solvents such as N‐methyl 2‐pyrrolidone, N,N‐dimethyl acetamide, and m‐cresol. Polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is even soluble in common solvents such as tetrahydrofuran and chloroform. Polyimides exhibit high transmittance at wavelengths above 400 nm. The glass transition temperature of polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and pyromellitic dianhydride is 370°C, while that from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is about 260°C. The initial thermal decomposition temperatures of these polyimides are 520–540°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1299–1304, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号